A Generalized Integral Operator Associated with Functions of Bounded Boundary Rotation ¹

L. Dileep, S. Latha

Abstract

In this paper, we define the subclass $\mathcal{V}_k^{\lambda}(\beta, \delta, n)$ of analytic functions by using the generalized Al-Oboudi differential operator. We determine certain properties of the integral operator $I_n(f_1, \dots, f_m)$ for the functions belonging to the class $\mathcal{V}_k^{\lambda}(\beta, \delta, n)$.

2000 Mathematics Subject Classification: 30C45.

Key words and phrases: Bounded boundary rotation, Analytic functions, Convex functions, Generalized integral operator.

1 Introduction

Let \mathcal{A} denote the class of all analytic functions of the form

(1)
$$f(z) = z + \sum_{j=2}^{\infty} a_j z^j$$

defined in the open unit disc $\mathcal{U} = \{z \in \mathbb{C} : |z| < 1\}$. Let \mathcal{S} be the subclass of \mathcal{A} containing univalent functions defined in \mathcal{U} . Let $\mathcal{P}_k^{\lambda}(\beta)$ denote the class of analytic functions p(z) defined in \mathcal{U} satisfying the following properties

i.
$$p(0) = 1$$
.

ii.
$$\int_0^{2\pi} \left| \frac{\Re e^{i\lambda} p(z) - \beta \cos \lambda}{1 - \beta} \right| d\theta \le k\pi \cos \lambda$$

Accepted for publication (in revised form) 10 February, 2011

¹Received 03 September, 2009

where $k \geq 2$, λ is real, $|\lambda| < \frac{\pi}{2}$, $0 \leq \beta < 1$, $z = re^{i\theta}$, $0 \leq r < 1$. Let $\mathcal{V}_k^{\lambda}(\beta)$ [7] denote the class of functions f(z) analytic in \mathcal{U} satisfying the normalization conditions f(0) = f'(0) - 1 = 0 and

$$1 + \frac{zf''(z)}{f'(z)} \in \mathcal{P}_k^{\lambda}(\beta)$$

where k, λ and β are as above.

For $\beta = 0$ we get the class \mathcal{V}_k^{λ} of functions with bounded boundary rotation studied by Moulis [6].

Any function $f(z) \in \mathcal{V}_k^{\lambda}(\beta)$ if and only if

$$\Re\left\{e^{i\lambda}\left(1+\frac{zf''(z)}{f'(z)}\right)\right\} > \beta\cos\lambda, \qquad |z| < \frac{k-\sqrt{k^2-4}}{2}.$$

A function $f \in \mathcal{U}$ with the normalization properties f(0) = f'(0) - 1 = 0 is said to be in the class $\mathcal{U}_k^{\lambda}(\beta)$ if $\frac{zf'(z)}{f(z)} \in \mathcal{P}_k^{\lambda}(\beta)$.

For $f \in \mathcal{A}$, $S\check{a}l\check{a}gean$ [10] introduced the differential operator $D^n: A \longrightarrow A, n \in \mathbb{N}$ defined as

$$D^{0}f(z) = f(z), \ D^{1}f(z) = Df(z) = zf'(z)$$

 $D^{n}f(z) = D(D^{n-1}f(z)).$

Al-Oboudi [2] generalized this operator by considering $D^n_{\delta}: A \longrightarrow A$, $n \in \mathbb{N}, \ \delta > 0$ defined by

$$D_{\delta}^{0} f(z) = f(z)$$

$$D_{\delta}^{1} = (1 - \delta)f(z) + \delta z f'(z) = D_{\delta} f(z)$$

$$D_{\delta}^{n} = D(D_{\delta}^{n-1} f(z)).$$

From the above definition, if f is of the form (1), we have

(2)
$$D_{\delta}^{n} f(z) = z + \sum_{j=2}^{\infty} [1 + (j-1)\delta]^{n} a_{j} z^{j}, \qquad n \in \mathbb{N}_{0},$$

with $D_{\delta}^n f(0) = 0$.

Let $V_k^{\lambda}(\beta, \delta, n)$ denote the class of functions f(z) analytic in \mathcal{U} with the normalization properties f(0) = f'(0) - 1 = 0 and

$$\frac{z(D_{\delta}^n f(z))'}{D_{\delta}^n f(z)} \in \mathcal{P}_k^{\lambda}(\beta)$$

where $k \geq 2$, λ is real, $|\lambda| < \frac{\pi}{2}$, $0 \leq \beta < 1$, $z = re^{i\theta}$, $0 \leq r < 1$. For $\delta = 1$, n = 1, we get the class $\mathcal{V}_k^{\lambda}(\beta)$ studied by Moulis [7]. If $\delta = 1$, n = o, we get the class \mathcal{U}_k^{λ} studied by Moulis [6]. Any function $f(z) \in \mathcal{V}_k^{\lambda}(\beta, \delta, n)$ if and only if

$$\Re\left\{e^{i\lambda}\left(1+\frac{z(D_{\delta}^n f(z))'}{D_{\delta}^n f(z)}\right)\right\} > \beta\cos\lambda, \qquad |z| < \frac{k-\sqrt{k^2-4}}{2}.$$

Let $n, m \in \mathbb{N}_0$ and $\alpha_i > 0$, $1 \le i \le m$. We define the integral operator $I_n : A^n \longrightarrow A$

$$(3) I_n(f_1, \dots, f_m)(z) = \int_0^z \left(\frac{D_\delta^n f_1(t)}{t}\right)^{\alpha_1} \dots \left(\frac{D_\delta^n f_m(t)}{t}\right)^{\alpha_m} dt, \ z \in \mathcal{U},$$

where $f_i \in \mathcal{A}$ and D^n_{δ} is the Al-Oboudi differential operator .

For parametric values of $n=0, \delta=1$ we have the integral operator

$$I_0(f_1, \cdots, f_m)(z) = \int_0^z \left(\frac{f_1(t)}{t}\right)^{\alpha_1} \cdots \left(\frac{f_m(t)}{t}\right)^{\alpha_m} dt,$$

introduced in [4].

If n = 0, $\delta = 1$, m = 1, $\alpha_1 = \cdots = \alpha_m = 0$ and $D^0 f_1(z) = D^0 f(z) = f(z) \in \mathcal{A}$, we have the integral operator of Alexander $I_0(f)(z) = \int_0^z \frac{f(t)}{t} dt$ introduced in [1].

For n = 0, $\delta = 1$, m = 1, $\alpha_1 = \alpha \in [0, 1]$, $\alpha_2 = \cdots = \alpha_m = 0$ and $D^0 f_1(z) = D^0 f(z) = f(z) \in \mathcal{S}$, we have the integral operator $I(f)(z) = \int_0^z \left(\frac{f(t)}{t}\right)^{\alpha} dt$ studied in [9].

If $\alpha_i \in \mathbb{C}$ for $1 \leq i \leq m$, then we have the integral operator $I_n(f_1, \dots, f_m)$ studied in [8].

2 Main Result

Theorem 1 Let $f_i \in \mathcal{V}_k^{\lambda}(\beta_i, \delta, n)$ for $1 \leq i \leq m$ with $0 \leq \beta_i < 1$, and $n \in \mathbb{N}_0$, also let $\alpha_i > 0$, $1 \leq i \leq m$. If $\sum_{i=1}^m \alpha_i (1 - \beta_i) \leq 1$, then $I_n(f_1, \dots, f_m) \in \mathcal{V}_k^{\lambda}(\gamma)$, with $\gamma = 1 + \sum_{i=1}^m \alpha_i (\beta_i - 1)$.

Proof: From (2), for $1 \le i \le m$, we have

$$\frac{D_{\delta}^{n} f_{i}(z)}{z} = 1 + \sum_{j=2}^{\infty} [1 + (j-1)\delta]^{n} a_{j} z^{j-1}, \quad n \in \mathbb{N}_{0}$$

and

$$\frac{D_{\delta}^{n} f_{i}(z)}{z} \neq 0, \ \forall z \in \mathcal{U}.$$

Consider,

$$I_n(f_i, \dots, f_m)(z) = \int_0^z \left(\frac{D_\delta^n f_1(t)}{t}\right)^{\alpha_1} \dots \left(\frac{D_\delta^n f_m(t)}{t}\right)^{\alpha_m} dt.$$

On successive differentiation of $I_n(f_1, \dots, f_m)$, we get

$$I_n(f_1, \dots, f_m)'(z) = \left(\frac{D_{\delta}^n f_1(z)}{z}\right)^{\alpha_1} \dots \left(\frac{D_{\delta}^n f_m(z)}{z}\right)^{\alpha_m}$$

$$I_n(f_1,\cdots,f_m)''(z) =$$

$$\sum_{i=1}^{m} \alpha_i \left(\frac{D_{\delta}^n f_i(z)}{z} \right)^{\alpha_i - 1} \frac{z(D_{\delta}^n f_i(z))' - D_{\delta}^n f_i(z)}{z^2} \prod_{j=1, j \neq i}^{m} \left(\frac{D_{\delta}^n f_j(z)}{z} \right)^{\alpha_j}$$

$$\frac{I_n(f_1,\cdots,f_m)''(z)}{I_n(f_1,\cdots,f_m)'(z)} = \sum_{i=1}^m \alpha_i \left[\frac{z(D_\delta^n f_i(z))}{D_\delta^n f_i(z)} - \frac{1}{z} \right].$$

Thus we obtain,

$$\frac{zI_n(f_1, \dots, f_m)''(z)}{I_n(f_1, \dots, f_m)'(z)} + 1 = \sum_{i=1}^m \alpha_i \left[\frac{z(D_{\delta}^n f_i(z))}{D_{\delta}^n f_i(z)} \right] - \sum_{i=1}^m \alpha_i + 1.$$

This relation is equivalent to

$$\Re\left\{e^{i\lambda}\left(\frac{zI_n(f_1,\cdots,f_m)''(z)}{I_n(f_1,\cdots,f_m)'(z)}+1\right)\right\} = \sum_{i=1}^m \Re e^{i\lambda}\left\{\alpha_i \frac{z(D_\delta^n f_i(z))'}{D_\delta^n f_i(z)} - \sum_{i=1}^m \alpha_i\right\} + 1.$$

Since
$$f_i \in \mathcal{V}_{\alpha}^{\lambda}(\beta_i, \delta, n)$$
, we get
$$\Re\left\{e^{i\lambda}\left(\frac{zI_n(f_1, \cdots, f_m)''(z)}{I_n(f_1, \cdots, f_m)'(z)} + 1\right)\right\} > \sum_{i=1}^m \Re e^{i\lambda}\alpha_i - \sum_{i=1}^m \alpha_i + 1$$

$$1 + \sum_{i=1}^m \alpha_i(\beta_i - 1).$$

Hence
$$I_n(f_1, \dots, f_m)(z) \in \mathcal{V}_k^{\lambda}(\gamma)$$
, where $\gamma = 1 + \sum_{i=1}^m \alpha_i(\beta_i - 1)$.

Corollary 1 For parametric values n = 0, $\delta = 1$, k = 2, $\lambda = 0$, we get the following result [3].

Let α_i , $i \in \{1, 2, ..., n\}$ be real numbers with the properties $\alpha_i > 0$ for $i \in \{1, 2, ..., n\}$ and $\sum_{i=1}^{n} \alpha_i \leq n+1$. We suppose that the functions f_i ,

 $i \in \{1, 2, ..., n\}$ are the starlike functions of order $\frac{1}{\alpha_i}$, $i \in \{1, 2, ..., n\}$, that is $f_i \in \mathcal{S}^*\left(\frac{1}{\alpha_i}\right)$ for all

 $i \in \{1, 2, ..., n\}$. Then the integral operator defined in (3) is convex.

For $\beta_1 = \beta_2 = \cdots$, $\beta_m = \beta$, $\delta = 1$, and n = 0, similarly we prove the following theorem.

Theorem 2 Let α_i be real numbers with the properties $\alpha_i > 0$ for $i \in \{1, 2, ..., n\}$ with $\sum_{i=1}^{m} \alpha_i \leq 1$. We suppose that the function

 $f_i \in \mathcal{V}_k^{\lambda}(\beta, 1, 0)$. Then the integral operator defined in (3) belongs to $\mathcal{V}_k^{\lambda}(\gamma)$, where $\gamma = 1 - \sum_{i=1}^m \alpha_i$.

Corollary 2 For parametric values n = 0, $\delta = 1$, k = 2, $\lambda = 0$, we get the following result [3].

Let α_i , $i \in \{1, 2, ..., n\}$ be real numbers with the properties $\alpha_i > 0$ for $i \in \{1, 2, ..., n\}$ and $\sum_{i=1}^{n} \alpha_i \leq 1$. We suppose that the functions f_i ,

 $i \in \{1, 2, ..., n\}$ are the starlike functions. Then the integral operator defined in (3) is convex by order $1 - \sum_{i=1}^{n} \alpha_i$.

References

- [1] J. W. Alexander, Functions which map the interior of the unit circle upon simple regions, Ann. of Maths, 17, 1915, 12-22.
- [2] AL-Oboudi, On univalent functions defined by a generalized Sălăgean operator, Int. J. Math. Sci., 25-28, 2004, 1429-1436.
- [3] D. Breaz, N. Breaz, Some convexity properties for a general integral operator, Journal of Inequalities in Pure and Applied Mathematics, vol. 7, no. 5, article 177, 2006.
- [4] D. Breaz, N. Breaz, Two integral operators, Studia Univ. Babes-Bolyai Math., 47(3), 2002, 13-19.

- [5] D. Breaz, S. Owa, N. Breaz, A new integral univalent operator, Acta Univ. Apulensis Math. Inform., 16, 2008, 11-16.
- [6] E. J. Moulis, A generalization of univalent functions with bounded boundary rotation, Trans. Am. Math. Soc., 174, 369-381.
- [7] E. J. Moulis, Generalization of the Robertson functions, Pacific J. Math., 81, 169-174.
- [8] S. Bulut, Sufficient conditions for univalence of an integral operator defined by Al-Oboudi differential operator, J. Inequal. Appl., 2008, art. id 957042.
- [9] S. S. Miller, P. T. Mocanu, M. O. Reade, Starlike integral operator, Pacific J. Math., 79(1), 1978, 157-168.
- [10] G. S. Sălăgean, Subclasses of univalent functions, Lecture Notes in Mathe., Springer - Verlag, 2013, 1983, 362-372.

S. Latha

University of Mysore Yuvaraja's College Department of Mathematics Mysore, India e-mail: drlatha@gmail.com