Riemannian Submersion from \mathbb{S}^{7} - Sphere ${ }^{1}$

Hakan Mete Taştan

Abstract

In this paper, we construct an almost quaternion structure which is integrable in the horizontal bundle of the Riemannian submersion $\pi: \mathbb{S}^{7} \rightarrow \mathbb{S}^{4}\left(\frac{1}{2}\right)$.

2000 Mathematics Subject Classification: 53C17, 53C15.
Key words and phrases: Riemannian submersion, vertical vector field, horizontal vector field, almost quaternion structure.

1 Preliminaries

Let M and B be smooth Riemannian manifolds. A Riemannian submersion π : $M \rightarrow B$ is a mapping of M onto B satisfying the following axioms;

S1. π has maximal rank; that is, each derivative map π_{*} of π is onto. Hence, for each $q \in B, \pi^{-1}(q)$ is a submanifold of M of dimension $\operatorname{dim} M-\operatorname{dim} B$ where the submanifolds $\pi^{-1}(q)$ are called fibers of M. A vector field on M is called vertical if it is tangent to a fiber and horizontal if orthogonal to in the fiber.

S2. π_{*} preserves lengths of horizontal vectors; that is, the isomorphism

$$
\pi_{* p}: \operatorname{ker}\left(\pi_{* p}\right)^{\perp} \rightarrow T_{q} B
$$

is an isometry, where $T_{q} B$ is tangent space of B at q and $p \in \pi^{-1}(q)$.

[^0]For a Riemannian submersion $\pi: M \rightarrow B$, let \mathcal{V} and \mathcal{H} denote the projections of the tangent spaces of M onto the subspaces of vertical and horizontal vectors, respectively. The letters U, V, W will always denote vertical vector fields, and X, Y, Z horizontal vector fields. Following O'Neill [8] we define the tensor T of type (1,2) for arbitrary vector fields E and F by

$$
T_{E} F=\mathcal{H} \nabla_{\mathcal{V} E} \mathcal{V} F+\mathcal{V} \nabla_{\mathcal{V} E} \mathcal{H} F
$$

where $\mathcal{V} E, \mathcal{H} E$, etc, denote the vertical and horizontal projections of the vector field E. We denote the set of all vector fields on M by $\mathcal{X}(M)$, the set of vertical vector fields by $\mathcal{V} \mathcal{X}(M)$ and the set of horizontal vector fields by $\mathcal{H X}(M)$. O'Neill has described the following three properties of the tensor T :
(1) T_{E} is a skew-symmetric linear operator on the tangent space of M and reverses horizontal and vertical subspaces.
(2) $T_{E}=T_{\mathcal{V} E}$, that is, T is vertical.
(3) For vertical vector fields V and W, T is symmetric, i.e., $T_{V} W=T_{W} V$.

In fact, along a fiber, T is the second fundamental form of the fiber provided we restrict ourselves to vertical vector fields.

Now, we simply dualize the definition of T by reversing \mathcal{V} and \mathcal{H} define the integrability tensor A as follows.

For arbitrary vector fields E and F,

$$
A_{E} F=\mathcal{H} \nabla_{\mathcal{H} E} \mathcal{V} F+\mathcal{V} \nabla_{\mathcal{H} E} \mathcal{H} F
$$

(1') A_{E} is a skew-symmetric operator on $\mathcal{X}(M)$ reversing the horizontal and vertical subspaces.
(2') $A_{E}=A_{\mathcal{H} E}$, that is, A is horizontal.
(3') For horizontal vector fields X, Y the tensor A is alternating, ie., $A_{X} Y=$ $-A_{Y} X$.

Definition 1 A basic vector field is a horizontal vector field X which is π related to a vector field X_{*} on B, i.e., $\pi_{*}\left(X_{p}\right)=X_{* \pi(p)}$ for all $p \in M$.

Lemma 1 If X and Y are basic vector fields on M which are π-related to X_{*} and Y_{*} respectively on B. Then

1. $<X, Y>=<X_{*}, Y_{*}>^{*} \circ \pi$, where $<,>$ is the metric on M, and $<,>^{*}$ the metric on B.
2. $\mathcal{H}[X, Y]$ is basic and is π-related to $\left[X_{*}, Y_{*}\right]$
3. $\mathcal{H} \nabla_{X} Y$ is basic and is π-related to $\nabla_{X_{*}}^{*} Y_{*}$, where ∇^{*} is the Riemannian connection on B.

Lemma 2 Let X and Y be horizontal vector fields, V and W be vertical vector fields. Then each of the following holds:

1. $A_{X} Y=\frac{1}{2} \mathcal{V}[X, Y]$.
2. $\nabla_{V} W=T_{V} W+\hat{\nabla}_{V} W$, where $\hat{\nabla}$ denotes the Riemannian connection along a fiber with respect to the induced metric.
3. a) $\nabla_{V} X=\mathcal{H} \nabla_{V} X+T_{V} X$,
b) If X is basic, $\mathcal{H} \nabla_{V} X=A_{X} V$.
4. $\nabla_{X} V=A_{X} V+\mathcal{V} \nabla_{X} V$.
5. $\nabla_{X} Y=\mathcal{H} \nabla_{X} Y+A_{X} Y$.

The proofs of these results are found in O'Neill [8] and R.H. Escobales [1].
Let \mathcal{R} denote the curvature tensor of M, and \mathcal{R}^{*} the curvature tensor of B. Since there is no danger of ambiguity, we will denote the horizontal lift of \mathcal{R}^{*} by \mathcal{R}^{*} as well. Following O'Neill [8] we set $<\mathcal{R}_{h_{1} h_{2}}^{*} h_{3}, h_{4}>=<\mathcal{R}_{h_{1} * h_{2^{*}}}^{*} h_{3^{*}}, h_{4^{*}}>^{*}$ where h_{i} are horizontal vectors and $\pi_{*}\left(h_{i}\right)=h_{i^{*}}$.

For E and F, linearly independent vectors, we denote the tangent plane spanned by these two vectors by $P_{E} F$. In general, if X is a horizontal vector, then $\pi_{*} X$ is denoted by $X_{*} . K, K_{*}$ and \hat{K} will denote the sectional curvature of M, B and the fiber $\pi^{-1}(q)$, respectively.

Theorem 1 Let $\pi: M \rightarrow B$ be a Riemannian submersion.
(a) Then for horizontal vector fields X, Y, Z and H

$$
\begin{gathered}
<\mathcal{R}_{X Y}^{*} Z, H>= \\
<\mathcal{R}_{X Y} Z, H>+2<A_{X} Y, A_{Z} H>-<A_{Y} Z, A_{X} H>-<A_{Z} X, A_{Y} H>
\end{gathered}
$$

(b) If X and Y are horizontal, and V and W are vertical vector fields, then

$$
\begin{aligned}
& <\mathcal{R}_{X V} Y, W>=<\left(\nabla_{X} T\right)_{V} W, Y>+<\left(\nabla_{V} A\right)_{X} Y, W>-<T_{V} X, T_{W} Y> \\
& \quad+<A_{X} V, A_{Y} W>
\end{aligned}
$$

Corollary 1 Let $\pi: M \rightarrow B$ be a Riemannian submersion. Then for linearly independent horizontal vector fields X and Y and linearly independent vertical vector fields V and W we obtain the following relations:

$$
\begin{equation*}
K\left(P_{V} W\right)=\hat{K}\left(P_{V} W\right)-\frac{<T_{V} V, T_{W} W>-<T_{V} W, T_{V} W>}{<V, V><W, W>-<V, W>^{2}} \tag{a}
\end{equation*}
$$

$$
K\left(P_{X} V\right)=\frac{<\left(\nabla_{X} T\right)_{V} V, X>+<A_{X} V, A_{X} V>-<T_{V} X, T_{V} X>}{<X, X><V, V>}
$$

$$
\begin{equation*}
K_{*}\left(P_{X_{*}} Y_{*}\right)=K\left(P_{X} Y\right)+\frac{3<A_{X} Y, A_{X} Y>}{<X, X><Y, Y>-<X, Y>^{2}} \tag{c}
\end{equation*}
$$

Corollary 2 Let $\pi: M \rightarrow B$ be a Riemannian submersion with totally geodesic fibers. Then for orthonormal horizontal vector fields X and Y and a vertical vector field V of unit length
(a) $K\left(P_{X} V\right)=<A_{X} V, A_{X} V>$,
(b) $K_{*}\left(P_{X_{*}} Y_{*}\right)=K\left(P_{X} Y\right)+3<A_{X} Y, A_{X} Y>$.

Proof. Immediate from Corollary 1.
Corollary 3 Let $\pi: M \rightarrow B$ be a Riemannian submersion with totally geodesic fibers. If X and Y are horizontal, and V and W are vertical, then;

$$
<\left(\nabla_{V} A\right)_{X} Y, W>+<\left(\nabla_{W} A\right)_{X} Y, V>=0
$$

Proof. See R.H. Escobales [2].

Definition 2 Let M be an n-dimensional manifold with a 3-dimensional vector bundle N consisting of tensors of type $(1,1)$ over M such that
in any coordinate neighborhood \mathcal{U} of M, there is a local basis $\{F, G, H\}$ of N with

$$
F^{2}=-I, \quad G^{2}=-I, \quad H^{2}=-I
$$

$$
\begin{equation*}
G H=-H G=F, \quad H F=-F H=G, \quad F G=-G F=H \tag{1}
\end{equation*}
$$

where, I denotes the identity tensor of type $(1,1)$ in M.

Such a local basis $\{F, G, H\}$ is called a canonical local basis of the bundle N in \mathcal{U}. The bundle N is called an almost quaternion structure in M, and M with N an almost quaternion manifold, which will be denoted by (M, N). An almost quaternion manifold M is of dimension $n=4 m(m \geq 1)$.

Definition 3 Let (M, N) be an almost quaternion manifold with a canonical local basis of N in a coordinate neighborhood \mathcal{U}. We now assume that there exists a system of coordinates $\left(x^{l}\right)$ in each \mathcal{U} with respect to which F, G and H have components of the form

$$
F=\left(\begin{array}{cccc}
0 & -E & 0 & 0 \tag{2}\\
E & 0 & 0 & 0 \\
0 & 0 & 0 & -E \\
0 & 0 & E & 0
\end{array}\right), G=\left(\begin{array}{cccc}
0 & 0 & -E & 0 \\
0 & 0 & 0 & E \\
E & 0 & 0 & 0 \\
0 & -E & 0 & 0
\end{array}\right)
$$

$$
H=\left(\begin{array}{cccc}
0 & 0 & 0 & -E \\
0 & 0 & -E & 0 \\
0 & E & 0 & 0 \\
E & 0 & 0 & 0
\end{array}\right)
$$

where E denotes the identity $(m \times m)$-matrix. In such a case, the given almost quaternion structure N is said to be integrable.

2 Main Results

Let us consider the following Riemannian submersion

$$
\pi: \mathbb{S}^{7} \rightarrow \mathbb{S}^{4}\left(\frac{1}{2}\right)
$$

where \mathbb{S}^{7} is 7 -dimensional unit sphere and $\mathbb{S}^{4}\left(\frac{1}{2}\right)$ is 4 -dimensional sphere with radius $\frac{1}{2}$. The existence of π is guaranteed by [1, Theorem 3.5]. Also, in [1] Escobales shows that this Riemannian submersion π has connected totally geodesic fibers and also the fibers are equal to the 3 -dimensional unit sphere \mathbb{S}^{3}. The fibers \mathbb{S}^{3} are both totally geodesic and totally umbilical submanifolds of \mathbb{S}^{7}.

Let $\{U, V, W\}$ be an orthonormal basis field on the fiber \mathbb{S}^{3}, i.e. $\{U, V, W\} \in$ $\mathcal{V} \mathcal{X}\left(\mathbb{S}^{7}\right)$. Since \mathbb{S}^{3} is both totally geodesic and totally umbilical submanifold of \mathbb{S}^{7} we can assume that orthonormal vertical vector fields U, V and W are geodesic vector fields. We fix these vector fields and define three mappings i, j and k on $\mathcal{H} \mathcal{X}\left(\mathbb{S}^{7}\right)$ as follows

$$
i, j, k: \mathcal{H X}\left(\mathbb{S}^{7}\right) \rightarrow \mathcal{H X}\left(\mathbb{S}^{7}\right)
$$

are defined by $i(X)=A_{X} U, j(X)=A_{X} V$, and $k(X)=A_{X} W$ for any horizontal vector field X. We see that these mappings are all tensor fields of type $(1,1)$.

Lemma 3 The tensors i, j and k which are defined above are skew-symmetric with respect to metric on \mathbb{S}^{7}.

Proof. We will only prove one since the proofs of others are similar. For any horizontal vector fields X and Y,

$$
\begin{equation*}
0=Y<X, U>=<\nabla_{Y} X, U>+<X, \nabla_{Y} U>=<A_{Y} X, U>+<X, A_{Y} U>, \tag{3}
\end{equation*}
$$

where we use Lemma 2-(5). Interchanging X and Y we have

$$
\begin{equation*}
0=<A_{X} Y, U>+<Y, A_{X} U> \tag{4}
\end{equation*}
$$

Since $A_{X} Y=-A_{Y} X$, (3) and (4) yields
$\left.\left.<A_{Y} U, X\right\rangle+<A_{X} U, Y\right\rangle=0$, that is, $\langle i(X), Y\rangle=-\langle i(Y), X\rangle$. Hence the proof completes.

Lemma 4 The tensors i, j and k are all isometries with respect to the metric on \mathbb{S}^{7}.

Proof. Again, we will only prove one since the proofs of others are similar. From the Corollary 1-(b) we have

$$
K\left(P_{X} V\right)=\frac{<\left(\nabla_{X} T\right)_{V} V, X>+<A_{X} V, A_{X} V>-<T_{V} X, T_{V} X>}{<X, X><V, V>}
$$

Since the fiber \mathbb{S}^{3} is totally geodesic, T is identically zero. On the other hand, we know that $K\left(P_{X} V\right)=1$, so we have

$$
1=\frac{<A_{X} V, A_{X} V>}{<X, X>}
$$

Hence we obtain $<A_{X} V, A_{X} V>=<X, X>$, that is, $\|j(X)\|^{2}=\|X\|^{2} \Rightarrow\|j(X)\|=$ $\|X\|$. Which means that j is an isometry.

Lemma 5 Let X be any horizontal vector field on $\mathcal{H X}\left(\mathbb{S}^{7}\right)$. Then the set $\{X, i(X), j(X), k(X)\}$ is an orthogonal basis on $\mathcal{H X}\left(\mathbb{S}^{7}\right)$.

Proof. $<X, i(X)>=<X, A_{X} U>=-<U, A_{X} X>=0$, since $A_{X} X=0$. Similarly,

$$
\begin{equation*}
<X, j(X)>=<X, k(X)>=0 \tag{5}
\end{equation*}
$$

$<j(X), k(X)>=<A_{X} V, A_{X} W>$. From the Theorem 1-(b) we have
$<\mathcal{R}_{X V} Y, W>=<\left(\nabla_{V} A\right)_{X} Y, W>+<A_{X} V, A_{Y} W>, \quad$ since $T \equiv 0$.
Put $Y=X$ in this equation,
$\mathcal{R}_{X V} X=1 .\{<X, X>V-<X, V>X\}=\|X\|^{2} V$, since
$<X, V>=0$, thus
$<\mathcal{R}_{X V} X, W>=\|X\|^{2}<V, W>=0$, since $<V, W>=0$.
On the other hand, we have from Corollary $3,<\left(\nabla_{V} A\right)_{X} X, W>=0$. Thus we get $<A_{X} V, A_{X} W>=0$. Similarly,

$$
\begin{equation*}
<i(X), j(X)>=<i(X), k(X)>=0 \tag{6}
\end{equation*}
$$

From the (5) and (6) the result follows.
Lemma $6 \quad i^{2}=-I, \quad j^{2}=-I, \quad k^{2}=-I, \quad$ where I denotes the identity tensor of type $(1,1)$ in \mathbb{S}^{7}.

Proof. We will only prove one since the proofs of others are similar. We must show that $i^{2}(X)=-X$, for any horizontal vector field X.

Let Y be an arbitrary horizontal vector field, since i is skew-symmetric we write $<i^{2}(X), Y>=<i(i(X)), Y>=-<i(X), i(Y)>. \quad$ On the other hand we know that i is an isometry, thus we have
$-<i(X), i(Y)>=-<X, Y>$. Finally, $<i^{2}(X), Y>=-<X, Y>$. From this, we deduce that $i^{2}(X)=-X$.

Lemma $7 \quad i j=-j i, \quad i k=-k i, \quad j k=-k j$.
Proof. We will only prove one since the proofs of others are similar. For example, $i j=-j i$. We must show that $i j(X)=-j i(X)$ for any horizontal vector field X.

Let Y be an arbitrary horizontal vector field, since i is skew-symmetric we can write
$<i j(X), Y>=<i\left(A_{X} V\right), Y>=-<A_{X} V, i(Y)>=-<A_{X} V, A_{Y} U>$. Here we use Theorem 1-(b) and $T \equiv 0$ we get,
$<\mathcal{R}_{X V} Y, U>=<\left(\nabla_{V} A\right)_{X} Y, U>+<A_{X} V, A_{Y} U>$. But
$\mathcal{R}_{X V} Y=1 .\{<X, Y>V-<V, Y>X\}=<X, Y>V$,
hence $<\mathcal{R}_{X V} Y, U>=<X, Y><V, U>=0$, since $\quad<V, U>=0$.
Thus we have, $\quad-<A_{X} V, A_{Y} U>=<\left(\nabla_{V} A\right)_{X} Y, U>$.
On the other hand we have from Corollary 3
$<\left(\nabla_{V} A\right)_{X} Y, U>=-<\left(\nabla_{U} A\right)_{X} Y, V>$. Therefore we obtain
$<i j(X), Y>=-<\left(\nabla_{U} A\right)_{X} Y, V>$, this is equal to $<A_{X} U, A_{Y} V>$, using properties of $A \quad\left(1^{\prime}\right)$ and (3^{\prime}), we get
$<A_{X} U, A_{Y} V>=-<A_{Y} A_{X} U, V>=<A_{A_{X} U} Y, V>$

$$
=-<A_{A_{X} U} V, Y>=-<j i(X), Y>
$$

From this, we deduce that $i j(X)=-j i(X)$.
Lemma $8 \quad i j=k \quad$ or $\quad i j=-k$.
Proof. We must show that $i j(X)=k(X)$ or $\quad i j(X)=-k(X)$ for any $X \in$ $\mathcal{H} \mathcal{X}\left(\mathbb{S}^{7}\right)$. If $X=0$, then it is clear. Therefore we can assume $X \neq 0$. Since $\quad i j(X) \in$ $\mathcal{H X}\left(\mathbb{S}^{7}\right)$ and $\{X, i(X), j(X), k(X)\}$ is an orthogonal basis on $\mathcal{H X}\left(\mathbb{S}^{7}\right)$, we can write $i j(X)=\lambda_{1} X+\lambda_{2} i(X)+\lambda_{3} j(X)+\lambda_{4} k(X)$, where $\lambda_{a}(1 \leq a \leq 4)$ are real-valued functions on fiber \mathbb{S}^{3}, where,

$$
\begin{aligned}
& \lambda_{1}=\frac{\langle i j(X), X\rangle}{\langle X, X\rangle}, \quad \lambda_{2}=\frac{\langle i j(X), i(X)\rangle}{<i(X), i(X)\rangle}, \quad \lambda_{3}=\frac{\langle i j(X), j(X)\rangle}{<j(X), j(X)\rangle}, \quad \lambda_{4}=\frac{\langle i j(X), k(X)\rangle}{\langle k(X), k(X)\rangle} \\
& <i j(X), X>=<A_{A_{X} V U, X>=-<A_{X} U, A_{X} V>}=-<i(X), j(X)>=0, \text { so }
\end{aligned}
$$

$$
\begin{equation*}
<i j(X), X>=0 . \tag{7}
\end{equation*}
$$

$<i j(X), i(X)>=<A_{A_{X} V} U, A_{X} U>=A_{A_{X} V}<U, A_{X} U>-<U, A_{A_{X} V} A_{X} U>$ $=<U, A_{A_{X} V} A_{X} U>$, since $\left\langle U, A_{X} U>=0\right.$. From the Theorem 1-(b) we can write $<U, A_{A_{X} V} A_{X} U>=<\mathcal{R}_{\left(A_{X} V\right) U} X, U>-<\left(\nabla_{U} A\right)_{A_{X} V} X, U>$. Where, since $\mathcal{R}_{\left(A_{X} V\right) U} X=1 .\left\{<X, A_{X} V>U-<X, U>A_{X} V\right\}=0$, we obtain $<i j(X), i(X)>=-<\left(\nabla_{U} A\right)_{A_{X} V} X, U>$. But from the Corollary 3 we deduce that
$-<\left(\nabla_{U} A\right)_{A_{X} V} X, U>=0$, so

$$
\begin{equation*}
<i j(X), i(X)>=0 . \tag{8}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
<i j(X), j(X)>=0 \tag{9}
\end{equation*}
$$

Now, we compute $<i j(X), k(X)>$.
$<i j(X), k(X)>=<A_{A_{X} V} U, A_{X} W>=-<A_{A_{X} V} A_{X} W, U>$, since $A_{A_{X} V} A_{X} W$ is vertical, we can write $A_{A_{X} V} A_{X} W=\alpha U+\beta V+\gamma W$, where α, β and γ are realvalued functions on \mathbb{S}^{3}.

$$
\begin{aligned}
<A_{A_{X} V} A_{X} W, V> & =-<A_{A_{X} V} V, A_{X} W>=-<j^{2}(X), k(X)> \\
& =<X, k(X)>=0 .
\end{aligned}
$$

Similarly,
$<A_{A_{X} V} A_{X} W, W>=<X, j(X)>=0$. Thus we have
$A_{A_{X} V} A_{X} W=\alpha U$. Let put $A_{X} V=Y$ and $A_{X} W=Z$. Then from the Corollary 2-(c) we get
$\frac{3<A_{Y} Z, A_{Y} Z>}{\left\langle Y, Y><Z, Z>-<Y, Z>^{2}\right.}=K_{*}\left(P_{Y_{*}} Z_{*}\right)-K\left(P_{Y} Z\right)=4-1=3$
$\Rightarrow<A_{Y} Z, A_{Y} Z>=\|Y\|^{2}\|Z\|^{2}$,
since $\left.\left.\langle Y, Z\rangle=<A_{X} V, A_{X} W\right\rangle=<j(X), k(X)\right\rangle=0$.
On the other hand $\|Y\|^{2}=<A_{X} V, A_{X} V>=<X, X>=\|X\|^{2}$ and
$\|Z\|^{2}=<A_{X} W, A_{X} W>=<X, X>=\|X\|^{2}$, so
$<A_{Y} Z, A_{Y} Z>=\|X\|^{4}$.
$\|X\|^{4}=<A_{Y} Z, A_{Y} Z>=<\alpha U, \alpha U>=\alpha^{2}<U, U>=\alpha^{2} .1=\alpha^{2}$, so $\alpha=$ $\pm\|X\|^{2}$. Hence,
$<i j(X), k(X)>=-<A_{A_{X} V} A_{X} W, U>$ $=-< \pm\|X\|^{2} U, U>=\mp\|X\|^{2}$. Finally

$$
\begin{equation*}
\lambda_{4}=\frac{\langle i j(X), k(X)\rangle}{\langle k(X), k(X)\rangle}=\frac{\mp\|X\|^{2}}{\|X\|^{2}}=\mp 1 . \tag{10}
\end{equation*}
$$

From the (7), (8) and (9), we get $\lambda_{1}=\lambda_{2}=\lambda_{3}=0$ and from the (10), $\lambda_{4}=\mp 1$. Thus we have the required result.

Remark 1 In case $\quad i j=k$, we get $\quad i j k=k k=k^{2}=-I \Rightarrow i j k=-I$.
If $\quad i j=-k$, then $j i k=-i j k=-(-k) k=k^{2}=-I \Rightarrow j i k=-I$.
In each case, we order i, j and k. such that their triple multiplication is equal to $-I$. Therefore, there will be no matter if we admit $i j k=-I$, so we have $i j=-j i=k, \quad k i=-k i=j, \quad j k=-k j=i$.

Let us denote by N the subspace of $\mathcal{H X}\left(\mathbb{S}^{7}\right)$ spanned by $\{i(X), j(X), k(X)\}$. By using Lemma 6, Lemma 7, Lemma 8 and Remark 1 we have the following.

Theorem $2 N$ is an almost quaternion structure in $\mathcal{H X}\left(\mathbb{S}^{7}\right)$.
Corollary 4 Given almost quaternion structure in Theorem above N is integrable.

Proof. We must verify (2) in the Definition 3. For any $X \in \mathcal{H X}\left(\mathbb{S}^{7}\right)$, using Lemma 5 and Remark 1, we can write

$$
\begin{gathered}
i(X)=0 . X+1 . i(X)+0 . j(X)+0 . k(X) \\
i(i(X))=-1 . X+0 . i(X)+0 . j(X)+0 . k(X) \\
i(j(X))=0 . X+0 . i(X)+0 . j(X)+1 . k(X) \\
i(k(X))=0 . X+0 . i(X)-1 . j(X)+0 . k(X)
\end{gathered}
$$

Thus the matrix of i,

$$
[i]_{4 \times 4}=\left(\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right)^{T}=\left(\begin{array}{cccc}
0 & -1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{array}\right)
$$

Similarly, the matrix of j,

$$
[j]_{4 \times 4}=\left(\begin{array}{cccc}
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{array}\right)
$$

and the matrix of k,

$$
[k]_{4 \times 4}=\left(\begin{array}{cccc}
0 & 0 & 0 & -1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

which means that N is integrable.

References

[1] R. H. Escobales, Jr., Riemannian submersion with totally geodesic fibers, J. Differential Geometry, 10, 1975, 253-276.
[2] R. H. Escobales, Jr., The integrability tensor for bundle-like foliations, Transactions of the American Mathematical Society, 270, 1982, 333-339.
[3] A. Gray, Pseudo-Riemannian almost product manifols and submersion, J. Math. Mech., 16, 1967, 715-737.
[4] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. 1, Intersience, New York, 1963.
[5] K. Yano, M. Kon, Structures on manifolds, World Scientific Publishing Co. Rte. Ltd., 1984.
[6] A.M. Magid, Submersions from anti-de sitter space with totally geodesic fibers, J. Differential Geometry, 16, 1981, 323-331.
[7] B. O'Neill, Semi-Riemannian Geometry with applications to Relativity, Academic Press, 1983.
[8] B. O'Neill, The Fundamental equations of a submersion, Michigan Math. J., 13, 1966, 459-469.
[9] A. Ranjan, Riemannian submersions of spheres with totally geodesic fibers, Osaka J. Math., 22, 1985, 243-260.

Hakan Mete Taştan
Istanbul University
Department of Mathematics
Vezneciler 34134, Istanbul, Turkey
e-mail: hakmete@istanbul.edu.tr

[^0]: ${ }^{1}$ Received 15 September, 2009
 Accepted for publication (in revised form) 04 March, 2011

