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Riemannian Submersion from S
7− Sphere 1

Hakan Mete Taştan

Abstract

In this paper, we construct an almost quaternion structure which is inte-
grable in the horizontal bundle of the Riemannian submersion π : S7 → S

4(1
2
).
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1 Preliminaries

Let M and B be smooth Riemannian manifolds. A Riemannian submersion π :
M → B is a mapping of M onto B satisfying the following axioms;

S1. π has maximal rank; that is, each derivative map π∗ of π is onto. Hence, for
each q ∈ B, π−1(q) is a submanifold of M of dimension dimM − dimB where the
submanifolds π−1(q) are called fibers of M . A vector field on M is called vertical

if it is tangent to a fiber and horizontal if orthogonal to in the fiber.

S2. π∗ preserves lengths of horizontal vectors; that is, the isomorphism

π∗p : ker(π∗p)
⊥ → TqB

is an isometry, where TqB is tangent space of B at q and p ∈ π−1(q).
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For a Riemannian submersion π : M → B, let V and H denote the projections
of the tangent spaces of M onto the subspaces of vertical and horizontal vectors,
respectively. The letters U, V,W will always denote vertical vector fields, andX,Y,Z

horizontal vector fields. Following O’Neill [8] we define the tensor T of type (1, 2)
for arbitrary vector fields E and F by

TEF = H∇VEVF + V∇VEHF

where VE,HE, etc, denote the vertical and horizontal projections of the vector field
E. We denote the set of all vector fields on M by X (M), the set of vertical vector
fields by VX (M) and the set of horizontal vector fields by HX (M). O’Neill has
described the following three properties of the tensor T :

(1) TE is a skew-symmetric linear operator on the tangent space of M and
reverses horizontal and vertical subspaces.

(2) TE = TVE, that is, T is vertical.

(3) For vertical vector fields V and W , T is symmetric, i.e., TV W = TWV .
In fact, along a fiber, T is the second fundamental form of the fiber provided we

restrict ourselves to vertical vector fields.

Now, we simply dualize the definition of T by reversing V and H define the
integrability tensor A as follows.

For arbitrary vector fields E and F ,

AEF = H∇HEVF + V∇HEHF

(1′) AE is a skew-symmetric operator on X (M) reversing the horizontal and
vertical subspaces.

(2′) AE = AHE , that is, A is horizontal.

(3′) For horizontal vector fields X,Y the tensor A is alternating, ie., AXY =
−AYX.

Definition 1 A basic vector field is a horizontal vector field X which is π related
to a vector field X∗ on B, i.e., π∗(Xp) = X∗π(p) for all p ∈ M .

Lemma 1 If X and Y are basic vector fields on M which are π-related to X∗ and
Y∗ respectively on B. Then

1. < X,Y >=< X∗, Y∗ >∗ ◦π, where <,> is the metric on M , and <,>∗ the
metric on B.

2. H[X,Y ] is basic and is π-related to [X∗, Y∗]

3. H∇XY is basic and is π-related to ∇∗
X∗

Y∗, where ∇∗ is the Riemannian
connection on B.

Lemma 2 Let X and Y be horizontal vector fields, V and W be vertical vector
fields. Then each of the following holds:

1. AXY = 1
2V[X,Y ].
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2. ∇V W = TV W + ∇̂V W , where ∇̂ denotes the Riemannian connection along a
fiber with respect to the induced metric.

3. a) ∇V X = H∇V X + TV X,

b) If X is basic, H∇VX = AXV.

4. ∇XV = AXV + V∇XV.

5. ∇XY = H∇XY +AXY.

The proofs of these results are found in O’Neill [8] and R.H. Escobales [1].

Let R denote the curvature tensor of M , and R∗ the curvature tensor of B. Since
there is no danger of ambiguity, we will denote the horizontal lift of R∗ by R∗ as
well. Following O’Neill [8] we set < R∗

h1h2
h3, h4 >=< R∗

h1∗h2∗
h3∗ , h4∗ >∗ where hi

are horizontal vectors and π∗(hi) = hi∗ .

For E and F , linearly independent vectors, we denote the tangent plane spanned
by these two vectors by PEF . In general, if X is a horizontal vector, then π∗X is
denoted by X∗. K,K∗ and K̂ will denote the sectional curvature of M,B and the
fiber π−1(q), respectively.

Theorem 1 Let π : M → B be a Riemannian submersion.
(a) Then for horizontal vector fields X,Y,Z and H

< R∗
XY Z,H >=

< RXY Z,H > +2 < AXY,AZH > − < AY Z,AXH > − < AZX,AY H >,

(b) If X and Y are horizontal, and V and W are vertical vector fields, then

< RXV Y,W >=< (∇XT )V W,Y > + < (∇V A)XY,W > − < TV X,TWY >

+ < AXV,AY W > .

Corollary 1 Let π : M → B be a Riemannian submersion. Then for linearly
independent horizontal vector fields X and Y and linearly independent vertical vector
fields V and W we obtain the following relations:

(a) K(PV W ) = K̂(PV W )−
< TV V, TWW > − < TV W,TV W >

< V, V >< W,W > − < V,W >2
,

(b) K(PXV ) =
< (∇XT )V V,X > + < AXV,AXV > − < TV X,TV X >

< X,X >< V, V >
,

(c) K∗(PX∗
Y∗) = K(PXY ) +

3 < AXY,AXY >

< X,X >< Y, Y > − < X,Y >2
.
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Corollary 2 Let π : M → B be a Riemannian submersion with totally geodesic
fibers. Then for orthonormal horizontal vector fields X and Y and a vertical vector
field V of unit length

(a) K(PXV ) =< AXV,AXV >,

(b) K∗(PX∗
Y∗) = K(PXY ) + 3 < AXY,AXY > .

Proof. Immediate from Corollary 1.

Corollary 3 Let π : M → B be a Riemannian submersion with totally geodesic
fibers. If X and Y are horizontal, and V and W are vertical, then;

< (∇V A)XY,W > + < (∇WA)XY, V >= 0.

Proof. See R.H. Escobales [2].

Definition 2 Let M be an n-dimensional manifold with a 3-dimensional vector bun-
dle N consisting of tensors of type (1, 1) over M such that
in any coordinate neighborhood U of M , there is a local basis {F,G,H} of N with

F 2 = −I, G2 = −I, H2 = −I,

(1)

GH = −HG = F, HF = −FH = G, FG = −GF = H,

where, I denotes the identity tensor of type (1, 1) in M .

Such a local basis {F,G,H} is called a canonical local basis of the bundle N in
U . The bundle N is called an almost quaternion structure in M , and M with N an
almost quaternion manifold, which will be denoted by (M,N). An almost quaternion
manifold M is of dimension n = 4m(m ≥ 1).

Definition 3 Let (M,N) be an almost quaternion manifold with a canonical local
basis of N in a coordinate neighborhood U . We now assume that there exists a sys-
tem of coordinates (xl) in each U with respect to which F,G and H have components
of the form

(2) F =









0 −E 0 0
E 0 0 0
0 0 0 −E

0 0 E 0









, G =









0 0 −E 0
0 0 0 E

E 0 0 0
0 −E 0 0









,
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H =









0 0 0 −E

0 0 −E 0
0 E 0 0
E 0 0 0









where E denotes the identity (m × m)-matrix. In such a case, the given almost
quaternion structure N is said to be integrable.

2 Main Results

Let us consider the following Riemannian submersion

π : S7 → S
4(
1

2
)

where S7 is 7-dimensional unit sphere and S
4(12 ) is 4-dimensional sphere with radius

1
2 . The existence of π is guaranteed by [1, Theorem 3.5]. Also, in [1] Escobales
shows that this Riemannian submersion π has connected totally geodesic fibers and
also the fibers are equal to the 3-dimensional unit sphere S

3.The fibers S3 are both
totally geodesic and totally umbilical submanifolds of S7.

Let {U, V,W} be an orthonormal basis field on the fiber S
3, i.e. {U, V,W} ∈

VX (S7). Since S3 is both totally geodesic and totally umbilical submanifold of S7 we
can assume that orthonormal vertical vector fields U, V and W are geodesic vector
fields. We fix these vector fields and define three mappings i, j and k on HX (S7) as
follows

i, j, k : HX (S7) → HX (S7)

are defined by i(X) = AXU , j(X) = AXV , and k(X) = AXW for any horizontal
vector field X. We see that these mappings are all tensor fields of type (1, 1).

Lemma 3 The tensors i, j and k which are defined above are skew-symmetric with
respect to metric on S

7.

Proof. We will only prove one since the proofs of others are similar. For any
horizontal vector fields X and Y ,

(3)
0 = Y < X,U >=< ∇YX,U > + < X,∇Y U >=< AY X,U > + < X,AY U > ,

where we use Lemma 2-(5). Interchanging X and Y we have

(4) 0 =< AXY,U > + < Y,AXU > .

Since AXY = −AYX, (3) and (4) yields
< AY U,X > + < AXU, Y >= 0, that is, < i(X), Y >= − < i(Y ),X >. Hence

the proof completes.
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Lemma 4 The tensors i, j and k are all isometries with respect to the metric on
S
7.

Proof. Again, we will only prove one since the proofs of others are similar. From
the Corollary 1-(b) we have

K(PXV ) =
< (∇XT )V V,X > + < AXV,AXV > − < TV X,TV X >

< X,X >< V, V >

Since the fiber S3 is totally geodesic, T is identically zero. On the other hand, we
know that K(PXV ) = 1, so we have

1 =
< AXV,AXV >

< X,X >

Hence we obtain < AXV,AXV >=< X,X >, that is, ‖j(X)‖2 = ‖X‖2 ⇒ ‖j(X)‖ =
‖X‖. Which means that j is an isometry.

Lemma 5 Let X be any horizontal vector field on HX (S7). Then the set
{X, i(X), j(X), k(X)} is an orthogonal basis on HX (S7).

Proof. < X, i(X) >=< X,AXU >= − < U,AXX >= 0, since AXX = 0. Simi-
larly,

(5) < X, j(X) >=< X, k(X) >= 0 .

< j(X), k(X) >=< AXV,AXW >. From the Theorem 1-(b) we have
< RXV Y,W >=< (∇V A)XY,W > + < AXV,AY W >, since T ≡ 0.
Put Y = X in this equation,
RXV X = 1.{< X,X > V− < X,V > X} = ‖X‖2V , since
< X,V >= 0, thus
< RXV X,W >= ‖X‖2 < V,W >= 0, since < V,W >= 0.
On the other hand, we have from Corollary 3, < (∇V A)XX,W >= 0. Thus we

get < AXV,AXW >= 0. Similarly,

(6) < i(X), j(X) >=< i(X), k(X) >= 0 .

From the (5) and (6) the result follows.

Lemma 6 i2 = −I, j2 = −I, k2 = −I, where I denotes the identity tensor
of type (1, 1) in S

7.

Proof. We will only prove one since the proofs of others are similar. We must show
that i2(X) = −X, for any horizontal vector field X.

Let Y be an arbitrary horizontal vector field, since i is skew-symmetric we write
< i2(X), Y >=< i(i(X)), Y >= − < i(X), i(Y ) >. On the other hand we

know that i is an isometry, thus we have
− < i(X), i(Y ) >= − < X,Y >. Finally, < i2(X), Y >= − < X,Y >. From

this, we deduce that i2(X) = −X.
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Lemma 7 ij = −ji, ik = −ki, jk = −kj.

Proof. We will only prove one since the proofs of others are similar. For example,
ij = −ji. We must show that ij(X) = −ji(X) for any horizontal vector field
X.

Let Y be an arbitrary horizontal vector field, since i is skew-symmetric we can
write

< ij(X), Y >=< i(AXV ), Y >= − < AXV, i(Y ) >= − < AXV,AY U >. Here
we use Theorem 1-(b) and T ≡ 0 we get,

< RXV Y,U >=< (∇V A)XY,U > + < AXV,AY U > . But
RXV Y = 1.{< X,Y > V− < V, Y > X} =< X,Y > V ,
hence < RXV Y,U >=< X,Y >< V,U >= 0, since < V,U >= 0.
Thus we have, − < AXV,AY U >=< (∇V A)XY,U > .

On the other hand we have from Corollary 3
< (∇V A)XY,U >= − < (∇UA)XY, V > . Therefore we obtain
< ij(X), Y >= − < (∇UA)XY, V >, this is equal to < AXU,AY V >, using

properties of A (1′) and (3′), we get
< AXU,AY V >= − < AY AXU, V >=< AAXUY, V >

= − < AAXUV, Y >= − < ji(X), Y > .

From this, we deduce that ij(X) = −ji(X).

Lemma 8 ij = k or ij = −k.

Proof. We must show that ij(X) = k(X) or ij(X) = −k(X) for any X ∈
HX (S7). If X = 0, then it is clear. Therefore we can assume X 6= 0. Since ij(X) ∈
HX (S7) and {X, i(X), j(X), k(X)} is an orthogonal basis on HX (S7), we can write

ij(X) = λ1X + λ2i(X) + λ3j(X) + λ4k(X), where λa(1 ≤ a ≤ 4) are real-valued
functions on fiber S3, where,

λ1 =
<ij(X),X>
<X,X>

, λ2 =
<ij(X),i(X)>
<i(X),i(X)> , λ3 =

<ij(X),j(X)>
<j(X),j(X)> , λ4 =

<ij(X),k(X)>
<k(X),k(X)>

< ij(X),X >=< AAXV U,X >= − < AXU,AXV >

= − < i(X), j(X) >= 0, so

(7) < ij(X),X >= 0 .

< ij(X), i(X) >=< AAXV U,AXU >= AAXV < U,AXU > − < U,AAXV AXU >

=< U,AAXV AXU >, since < U,AXU >= 0. From the Theorem 1-(b) we can write
< U,AAXV AXU >=< R(AXV )UX,U > − < (∇UA)AXV X,U >. Where, since
R(AXV )UX = 1.{< X,AXV > U− < X,U > AXV } = 0, we obtain
< ij(X), i(X) >= − < (∇UA)AXV X,U > . But from the Corollary 3 we deduce

that
− < (∇UA)AXV X,U >= 0, so

(8) < ij(X), i(X) >= 0 .
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Similarly,

(9) < ij(X), j(X) >= 0 .

Now, we compute < ij(X), k(X) > .

< ij(X), k(X) >=< AAXV U,AXW >= − < AAXV AXW,U >, sinceAAXV AXW

is vertical, we can write AAXV AXW = αU + βV + γW , where α, β and γ are real-
valued functions on S

3.

< AAXV AXW,V >= − < AAXV V,AXW >= − < j2(X), k(X) >

=< X, k(X) >= 0.

Similarly,

< AAXV AXW,W >=< X, j(X) >= 0. Thus we have

AAXV AXW = αU . Let put AXV = Y and AXW = Z. Then from the Corollary
2-(c) we get

3<AY Z,AY Z>
<Y,Y ><Z,Z>−<Y,Z>2 = K∗(PY∗

Z∗)−K(PY Z) = 4− 1 = 3

⇒< AY Z,AY Z >= ‖Y ‖2‖Z‖2,

since < Y,Z >=< AXV,AXW >=< j(X), k(X) >= 0.

On the other hand ‖Y ‖2 =< AXV,AXV >=< X,X >= ‖X‖2 and

‖Z‖2 =< AXW,AXW >=< X,X >= ‖X‖2, so

< AY Z,AY Z >= ‖X‖4.

‖X‖4 =< AY Z,AY Z >=< αU,αU >= α2 < U,U >= α2.1 = α2, so α =
±‖X‖2. Hence,

< ij(X), k(X) >= − < AAXV AXW,U >

= − < ±‖X‖2U,U >= ∓‖X‖2. Finally

(10) λ4 =
<ij(X),k(X)>
<k(X),k(X)> = ∓‖X‖2

‖X‖2
= ∓1 .

From the (7), (8) and (9), we get λ1 = λ2 = λ3 = 0 and from the (10), λ4 = ∓1.
Thus we have the required result.

Remark 1 In case ij = k, we get ijk = kk = k2 = −I ⇒ ijk = −I.

If ij = −k, then jik = −ijk = −(−k)k = k2 = −I ⇒ jik = −I.

In each case, we order i, j and k. such that their triple multiplication is equal to
−I. Therefore, there will be no matter if we admit ijk = −I, so we have
ij = −ji = k, ki = −ki = j, jk = −kj = i.

Let us denote by N the subspace of HX (S7) spanned by {i(X), j(X), k(X)}. By
using Lemma 6, Lemma 7, Lemma 8 and Remark 1 we have the following.

Theorem 2 N is an almost quaternion structure in HX (S7).

Corollary 4 Given almost quaternion structure in Theorem above N is integrable.
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Proof. We must verify (2) in the Definition 3. For any X ∈ HX (S7), using Lemma
5 and Remark 1, we can write

i(X) = 0.X + 1.i(X) + 0.j(X) + 0.k(X)

i(i(X)) = −1.X + 0.i(X) + 0.j(X) + 0.k(X)

i(j(X)) = 0.X + 0.i(X) + 0.j(X) + 1.k(X)

i(k(X)) = 0.X + 0.i(X) − 1.j(X) + 0.k(X)

Thus the matrix of i,

[i]4×4 =









0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0









T

=









0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0









Similarly, the matrix of j,

[j]4×4 =









0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0









and the matrix of k,

[k]4×4 =









0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0









which means that N is integrable.
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