On the equation $x^{n}+y^{n}=z^{n 1}$

A. David Christopher

Abstract

We prove the non existence of non zero integral solution to the equation $x^{n}+y^{n}=z^{n}$ for few cases by categorizing the triplet (x, y, z).

2000 Mathematics Subject Classification: 11D41.

Key words and phrases: Fermat's last theorem, Integral solution.

References

[1] L. Euler, Theorematum quorundam arithmeticorum demonstrationes, Commentarii academiae scientiarum petropolintanae, 10, 1747, 125-146.
[2] G. Fatlings, The proof of Fermat's last theorem by R. Taylor and A. Wiles, Notices of the AMS, 42(7), 1995, 743-746.
[3] A. Wiles, Modular elliptic curves and Fermat's Last theorem, Annals of Mathematics 141(3), 1995, 443-551.
[4] E. Lampakis, In gaussian integers $x^{3}+y^{3}=z^{3}$ has only trivial solutions- A new approach, Electronic Journal of Combinatorial Number Theory, 8, 2008, Article 32.

A. David Christopher

The American College
Department of Mathematics
Madurai, Tamilnadu state, India
e-mail: davchrame@yahoo.co.in

[^0]
[^0]: ${ }^{1}$ Received 19 October, 2009
 Accepted for publication (in revised form) 02 April, 2011

