Certain Classes of Multivalent Functions Defined by a Fractional Differential Operator ${ }^{1}$

Tariq O. Salim

Abstract

In this paper, the fractional differential operator $\mathcal{D}_{p, \lambda}^{n, \alpha}$ is introduced and applied to define the classes $\mathcal{S}_{p, \lambda}^{n, \alpha}(\delta, \beta)$ and $\mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$ of β-uniformly convex and starlike p-valent functions and p-valent functions with negative coefficients, respectively. Several results concerning coefficient estimates and extreme points mainly for the class $\mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$ are obtained. Also results for a family of class preserving integral operators are considered.

2010 Mathematics Subject Classification: 30C45, 26A33.
Key words and phrases: Multivalent functions, fractional differential operator, coefficient estimates, extreme points, integral operators.

1 Introduction

Let $\mathcal{A}(p)$ be the class of functions $f(z)$ of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} z^{k+p} \quad(p \in \mathbb{N}) \tag{1}
\end{equation*}
$$

that are analytic and p-valent in the open unit disk $E=\{z: z \in \mathbb{C},|z|<1\}$
Let $\mathcal{T}(p)$ denote the subclass of $\mathcal{A}(p)$ consisting of functions that are analytic and p-valent $f(z)$ expressed in the form

$$
\begin{equation*}
f(z)=z^{p}-\sum_{k=1}^{\infty} a_{k+p} z^{k+p} \quad\left(a_{k+p} \geq 0, p \in \mathbb{N}\right) \tag{2}
\end{equation*}
$$

The fractional calculus are defined as follows (e.g., $[9,14]$)

[^0]Definition 1 The Riemann-Liouville fractional integral of order α is defined for the function f by

$$
\begin{equation*}
D_{z}^{-\alpha} f(z)=\frac{1}{\Gamma(\alpha)} \int_{0}^{z}(z-t)^{\alpha-1} f(t) d t \quad(\alpha>0) \tag{3}
\end{equation*}
$$

where the function $f(z)$ is analytic in a simply connected region of the z-plane containing the origin, and the multiplicity of $(z-t)^{\alpha-1}$ is removed by requiring $\log (z-t)$ to be real when $z-t>0$.

Definition 2 he Riemann-Liouville fractional derivative of order α is defined for the function f by

$$
\begin{equation*}
D_{z}^{\alpha} f(z)=\frac{1}{\Gamma(1-\alpha)} \frac{d}{d z} \int_{0}^{z}(z-t)^{-\alpha} f(t) d t \quad(0 \leq \alpha<1) \tag{4}
\end{equation*}
$$

where the function $f(z)$ is analytic in a simply connected region of the z-plane containing the origin, and the multiplicity of $(z-t)^{-\alpha}$ is removed by requiring $\log (z-t)$ to be real when $z-t>0$.

Definition 3 Under the hypothesis of Definition 1.2, the Riemann-Liouville fractional derivative of order $(n+\alpha)$ is defined for the function f by

$$
\begin{equation*}
D_{z}^{n+\alpha} f(z)=\frac{d^{n}}{d z^{n}} D_{z}^{\alpha} f(z) \quad\left(0 \leq \alpha<1, n \in \mathbb{N}_{0}=\mathbb{N} \cup\{0\}\right) \tag{5}
\end{equation*}
$$

The Gauss's hypergeometric function ${ }_{2} F_{1}(a, b ; c ; z)$ is defined for $z \in E$ by the series expression

$$
\begin{equation*}
{ }_{2} F_{1}(a, b ; c ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z^{k}}{k!}, c \neq 0,-1,-2, \ldots . \tag{6}
\end{equation*}
$$

where $(\sigma)_{k}$ is the Pochhammer symbol defined, in terms of Gamma functions, by

$$
(\sigma)_{k}=\frac{\Gamma(\sigma+k)}{\Gamma(\sigma)}= \begin{cases}1 & ,(k=0, \sigma \in \mathbb{C} \backslash\{0\}) \tag{7}\\ \sigma(\sigma+1) \ldots(\sigma+n-1) & ,(k=n \in \mathbb{N}, \sigma \in \mathbb{C})\end{cases}
$$

Let the function $\varphi_{p}(a, c ; z)$ be defined as

$$
\begin{equation*}
\varphi_{p}(a, c ; z)=z_{2} F_{1}(1, b ; c ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k}}{(c)_{k}} z^{k+p}, \quad c \neq 0,-1,-2, \ldots \ldots ; z \in E \tag{8}
\end{equation*}
$$

Now, let us define the operator $\Omega_{p}^{\alpha}: \mathcal{A}(p) \rightarrow \mathcal{A}(p)$ as

$$
\begin{align*}
\Omega_{p}^{\alpha} f(z)= & \frac{\Gamma(1+p-\alpha)}{\Gamma(1+p)} z^{\alpha} D_{z}^{\alpha} f(z) \quad, \alpha \neq p+1, p+2, \ldots \\
& =z^{p}+\sum_{k=1}^{\infty} \frac{(p+1)_{k}}{(p-\alpha+1)_{k}} a_{k+p} z^{k+p} \tag{9}
\end{align*}
$$

$$
=\varphi_{p}(p+1, p-\alpha+1 ; z) * f(z)
$$

where $f * g$ is the well known Hadamard product (or convolution) written as

$$
\begin{equation*}
(f * g)(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} b_{k+p} z^{k+p} \tag{10}
\end{equation*}
$$

for any two functions $f(z)=z^{p}+\sum_{k=1}^{\infty} a_{k+p} z^{k+p}$ and $g(z)=z^{p}+\sum_{k=1}^{\infty} b_{k+p} z^{k+p}$ belonging to $\mathcal{A}(p)$.
Now we introduce the linear fractional differential operator $\mathcal{D}_{p, \lambda}^{n, \alpha}: \mathcal{A}(p) \rightarrow \mathcal{A}(p)$ as follows

$$
\begin{align*}
\mathcal{D}_{p, \lambda}^{0,0} f(z)= & f(z) \\
\mathcal{D}_{p, \lambda}^{1, \alpha} f(z)= & (1-\lambda) \Omega_{p}^{\alpha} f(z)+\frac{\lambda z}{p}\left(\Omega_{p}^{\alpha} f(z)\right)^{\prime}=\mathcal{D}_{p, \lambda}^{\alpha} f(z) \\
\mathcal{D}_{p, \lambda}^{2, \alpha} f(z)= & \mathcal{D}_{p, \lambda}^{\alpha}\left(\mathcal{D}_{p, \lambda}^{1, \alpha} f(z)\right) \tag{11}\\
& \cdot \\
& \cdot \\
\mathcal{D}_{p, \lambda}^{n, \alpha} f(z)= & \mathcal{D}_{p, \lambda}^{\alpha}\left(\mathcal{D}_{p, \lambda}^{n-1, \alpha} f(z)\right)
\end{align*}
$$

for $n \in \mathbb{N}, \lambda \geq 0$ and $0 \leq \alpha<1$.
If f is given by (1), then making use of (9) and (11) we conclude that

$$
\begin{equation*}
\mathcal{D}_{p, \lambda}^{n, \alpha} f(z)=z^{p}+\sum_{k=1}^{\infty} \psi_{k, n}(\alpha, \lambda, p) a_{k+p} z^{k+p}, \quad n \in \mathbb{N}_{0} \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
\psi_{k, n}(\alpha, \lambda, p)=\left[\frac{(p+1)_{k}}{(p-\alpha+1)_{k}}\left(1+\frac{\lambda k}{p}\right)\right]^{n} \tag{13}
\end{equation*}
$$

when $p=1$, we get the fractional differential operator introduced and studied by Al-Oboudi and Al-Amoudi $[3,4]$, when $p=1$ and $\alpha=0$ we get Al-Oboudi differential operator [2], when $\alpha=0, \lambda=1$ and $p=1$ the Sălăgean operator is obtained [12], on setting $\lambda=0, n=1$ and $p=1$ we obtain the Owa-Srivastava fractional differential operator [10] and when $\alpha=0$ and $\lambda=1$, we get the differential operator studied by Eker and Şeker [5].

Note that $\mathcal{D}_{p, \lambda}^{n, \alpha} f(z)$ can easily be written in terms of convolution as

$$
\begin{equation*}
\mathcal{D}_{p, \lambda}^{n, \alpha} f(z)=G(z) * f(z) \tag{14}
\end{equation*}
$$

where $G(z)=\underbrace{\left\{\left(\varphi_{p}(p+1, p-\alpha+1 ; z) * g_{p, \lambda}(z)\right) * \ldots *\left(\varphi_{p}(p+1, p-\alpha+1 ; z) * g_{p, \lambda}(z)\right)\right\}}_{n-\text { times }}$
and $g_{p, \lambda}(z)=\frac{z^{p}-\left(1-\frac{\lambda}{p}\right) z^{p+1}}{(1-z)^{2}}$.If $f(z) \in \mathcal{T}(p)$ is given by (2), then

$$
\begin{equation*}
D_{p, \lambda}^{n, \alpha} f(z)=z^{p}-\sum_{k=1}^{\infty} \psi_{k, n}(\alpha, \lambda, p) a_{k+p} z^{k+p}, \quad n \in \mathbb{N}_{0} \tag{15}
\end{equation*}
$$

where $\psi_{k, n}(\alpha, \lambda, p)$ is as given by (13).
If $(f \circledast g)(z)$ is the modified Hadamard product written as

$$
\begin{equation*}
(f \circledast g)(z)=z^{p}-\sum_{k=1}^{\infty} a_{k+p} b_{k+p} z^{k+p}, \quad\left(a_{k+p}, b_{k+p} \geq 0\right) \tag{16}
\end{equation*}
$$

for the functions $f(z)=z^{p}-\sum_{k=1}^{\infty} a_{k+p} z^{k+p}$ and $g(z)=z^{p}-\sum_{k=1}^{\infty} b_{k+p} z^{k+p}$ belonging to $\mathcal{T}(p)$. Then $\mathcal{D}_{p, \lambda}^{n, \alpha} f(z)$ can be written as

$$
\begin{equation*}
D_{p, \lambda}^{n, \alpha} f(z)=W(z) \circledast f(z) \tag{17}
\end{equation*}
$$

where

$$
\begin{aligned}
& W(z)=\underbrace{\left\{\left(\omega_{p}(p+1, p-\alpha+1 ; z) \circledast h_{p, \lambda}(z)\right) \circledast \ldots \circledast\left(\omega_{p}(p+1, p-\alpha+1 ; z) \circledast h_{p, \lambda}(z)\right)\right\}}_{n-\text { times }}, \\
& \omega_{p}(p+1, p-\alpha+1 ; z)=2 z^{p}-\varphi_{p}(p+1, p-\alpha+1 ; z) \text { and } h_{p, \lambda}(z)=2 z^{p}-g_{p, \lambda}(z) .
\end{aligned}
$$

Consider the subclass $\mathcal{S}_{p, \lambda}^{n, \alpha}(\delta, \beta)$ consisting of functions $f \in \mathcal{A}(p)$ and satisfying

$$
\begin{equation*}
\operatorname{Re}\left\{\frac{z\left(D_{p, \lambda}^{n, \alpha} f(z)\right)^{\prime}}{D_{p, \lambda}^{n, \alpha} f(z)}-\delta\right\} \geq \beta\left|\frac{z\left(D_{p, \lambda}^{n, \alpha} f(z)\right)^{\prime}}{D_{p, \lambda}^{n, \alpha} f(z)}-p\right| \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
z \in E, \beta \geq 0, \quad-p \leq \delta \leq p, 0 \leq \alpha<1, \lambda \geq 0, p \in \mathbb{N} \text { and } n \in N_{0} \tag{19}
\end{equation*}
$$

Define the subclass $\mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$ of functions $f \in \mathcal{T}(p)$ as

$$
\begin{equation*}
\mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)=\mathcal{S}_{p, \lambda}^{n, \alpha}(\delta, \beta) \cap \mathcal{T}(p) \tag{20}
\end{equation*}
$$

It is interesting to note that the classes $\mathcal{S}_{p, \lambda}^{n, \alpha}(\delta, \beta)$ and $\mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$ extends to the classes of starlike, convex, β-uniformly starlike and β-uniformly convex for suitable choice of the parameters $n, \alpha, p, \lambda, \delta$ and β. For instant
(i) For $n=1, \lambda=0$ and $p=1$, then $\mathcal{S}_{1,0}^{1, \alpha}(\delta, \beta) \equiv \beta-\mathcal{S B}_{\alpha}(\delta)$ and $\mathcal{T}_{1,0}^{1, \alpha}(\delta, \beta)$ $\equiv \beta-\mathcal{T S B}_{\alpha}(\delta)$ which are the classes introduced and studied by Akbarally and

Darus [1].
(ii) For $\alpha=0$ and $n=0$, then $\mathcal{S}_{p, \lambda}^{0,0}(\delta, \beta) \equiv \mathcal{U S T}(\delta, \beta, p)$ and for $n=1, \lambda=0$ and $\alpha \rightarrow 1$, then $\mathcal{S}_{p, 0}^{1,1}(\delta, \beta) \equiv \mathcal{U C} \mathcal{V}(\delta, \beta, p)$ where $\mathcal{U S T}(\delta, \beta, p)$ and $\mathcal{U C \mathcal { V }}(\delta, \beta, p)$ are the subclasses of β-uniformly starlike and β-uniformly convex functions studied recently by Khairnar and More [7]. Several other classes studied by several authors can be derived from the classes $\mathcal{S}_{p, \lambda}^{n, \alpha}(\delta, \beta)$ and $\mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$, see e.g. [6,11,13].

The purpose of the present investigation is to investigate results concerning coefficient estimates and extreme points for p-valent functions $f(z)$ of negative coefficients belonging to the class $\mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$. Also, we obtain some results for the integral operators known as Komatu and Jung-Kim-Srivastava integral operators.

2 Coefficient Estimates

Theorem 1 A function $f(z) \in \mathcal{A}(p)$ defined by (1) is in $\mathcal{S}_{p, \lambda}^{n, \alpha}(\delta, \beta)$ if

$$
\begin{equation*}
\sum_{k=1}^{\infty}[k(1+\beta)+p-\delta] \psi_{k, n}(\alpha, \lambda, p)\left|a_{k+p}\right| \leq p-\delta \tag{21}
\end{equation*}
$$

with the limits of parameters given in (19) and $\psi_{k, n}(\alpha, \lambda, p)$ given by (13).
Proof. It suffices to show that

$$
\beta\left|\frac{z\left(D_{p, \lambda}^{n, \alpha} f(z)\right)^{\prime}}{D_{p, \lambda}^{n, \alpha} f(z)}-p\right|-\operatorname{Re}\left\{\frac{z\left(D_{p, \lambda}^{n, \alpha} f(z)\right)^{\prime}}{D_{p, \lambda}^{n, \alpha} f(z)}-\delta\right\} \leq p-\delta
$$

Notice that

$$
\begin{aligned}
& \beta\left|\frac{z\left(D_{p, \lambda}^{n, \alpha} f(z)\right)^{\prime}}{D_{p, \lambda}^{n, \alpha} f(z)}-p\right|-\operatorname{Re}\left\{\frac{z\left(D_{p, \lambda}^{n, \alpha} f(z)\right)^{\prime}}{D_{p, \lambda}^{n, \alpha} f(z)}-\delta\right\} \\
\leq & (1+\beta)\left|\frac{z\left(D_{p, \lambda}^{n, \alpha} f(z)\right)^{\prime}}{D_{p, \lambda}^{n, \alpha} f(z)}-p\right| \leq \frac{(1+\beta) \sum_{k=1}^{\infty} k \psi_{k, n}(\alpha, \lambda, p)\left|a_{k+p}\right|}{1-\sum_{k=1}^{\infty} \psi_{k, n}(\alpha, \lambda, p)\left|a_{k+p}\right|}
\end{aligned}
$$

This expression is bounded by $(p-\delta)$ if

$$
(1+\beta) \sum_{k=1}^{\infty} k \psi_{k, n}(\alpha, \lambda, p)\left|a_{k+p}\right| \leq(p-\delta)-(p-\delta) \sum_{k=1}^{\infty} \psi_{k, n}(\alpha, \lambda, p)\left|a_{k+p}\right|
$$

which directly yields the inequality (21).
Now we state and prove the necessary and sufficient condition for $f(z)$ to belong to the class $\mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$.

Theorem $2 A$ function $f(z) \in \mathcal{T}(p)$ defined by (2) is in $\mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$ if and only if

$$
\begin{equation*}
\sum_{k=1}^{\infty}[k(1+\beta)+p-\delta] \psi_{k, n}(\alpha, \lambda, p) a_{k+p} \leq p-\delta \tag{22}
\end{equation*}
$$

with the limits of parameters given in (19) and $\psi_{k, n}(\alpha, \lambda, p)$ given by (13).
Proof. In view of Theorem 1, we need only to prove the sufficient part. Let $f(z) \in \mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$ and z be real. Then by the relations (15) and (20), we get

$$
\frac{p-\sum_{k=1}^{\infty}(k+p) \psi_{k, n}(\alpha, \lambda, p) a_{k+p} z^{k}}{1-\sum_{k=1}^{\infty} \psi_{k, n}(\alpha, \lambda, p) a_{k+p} z^{k}}-\delta \geq \beta\left|\frac{\sum_{k=1}^{\infty} k \psi_{k, n}(\alpha, \lambda, p) a_{k+p} z^{k}}{1-\sum_{k=1}^{\infty} \psi_{k, n}(\alpha, \lambda, p) a_{k+p} z^{k}}\right|
$$

Allowing $z \rightarrow 1$ along the real axis, we get the desired inequality. The result is sharp for

$$
\begin{equation*}
f(z)=z^{p}-\frac{p-\delta}{[k(1+\beta)+p-\delta] \psi_{k, n}(\alpha, \lambda, p)} z^{k+p}, \quad k \in \mathbb{N} \tag{23}
\end{equation*}
$$

and the proof is complete.
Corollary 1 Let the function $f(z) \in \mathcal{T}(p)$ defined by (2) be in the class $\mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$. Then

$$
\begin{equation*}
a_{k+p} \leq \frac{p-\delta}{[k(1+\beta)+p-\delta] \psi_{k, n}(\alpha, \lambda, p)}, \quad k \in \mathbb{N} \tag{24}
\end{equation*}
$$

with equality for the function $f(z)$ given by (23) and the limits of parameters are given in (19) and $\psi_{k, n}(\alpha, \lambda, p)$ is given by (13).

3 Extreme Points for $\mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$

Theorem 3 Let $f_{0}(z)=z^{p}$ and

$$
\begin{equation*}
f_{k}(z)=z^{p}-\frac{(p-\delta)}{[k(1+\beta)+p-\delta] \psi_{k, n}(\alpha, \lambda, p)} z^{k+p}, \quad k \in \mathbb{N} \tag{25}
\end{equation*}
$$

Then $f \in \mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$ if and only if it can be expressed in the form

$$
\begin{equation*}
f(z)=\sum_{k=0}^{\infty} \eta_{k} f_{k}(z) \tag{26}
\end{equation*}
$$

where $\eta_{k} \geq 0$ and $\sum_{k=0}^{\infty} \eta_{k}=1$, and $\psi_{k, n}(\alpha, \lambda, p)$ is given by (13).

Proof. Suppose that

$$
f(z)=\sum_{k=0}^{\infty} \eta_{k} f_{k}(z)=z^{p}-\sum_{k=1}^{\infty} \eta_{k} \frac{(p-\delta)}{[k(1+\beta)+p-\delta] \psi_{k, n}(\alpha, \lambda, p)} z^{k+p} .
$$

Then

$$
\begin{gathered}
\sum_{k=1}^{\infty} \frac{[k(1+\beta)+p-\delta] \psi_{k, n}(\alpha, \lambda, p)}{(p-\delta)} \frac{(p-\delta)}{[k(1+\beta)+p-\delta] \psi_{k, n}(\alpha, \lambda, p)} \eta_{k} \\
=\sum_{k=1}^{\infty} \eta_{k}=\left(1-\eta_{0}\right) \leq 1
\end{gathered}
$$

Therefore, $f(z) \in \mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$.
Conversely, suppose that $f \in \mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$, thus by (24)

$$
a_{k+p} \leq \frac{p-\delta}{[k(1+\beta)+p-\delta] \psi_{k, n}(\alpha, \lambda, p)}
$$

Setting $\quad \eta_{k}=\frac{[k(1+\beta)+p-\delta] \psi_{k, n}(\alpha, \lambda, p)}{(p-\delta)} a_{k+p}, k \in \mathbb{N}$ and $\eta_{0}=1-\sum_{k=1}^{\infty} \eta_{k}$, then $f(z)$ can be expressed in the form (26), and the proof is complete.

Corollary 2 The extreme points of $\mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$ are the functions $f_{0}(z)=z^{p}$ and $f_{k}(z)=z^{p}-\frac{(p-\delta)}{[k(1+\beta)+p-\delta] \psi_{k, n}(\alpha, \lambda, p)} z^{k+p}, k \in \mathbb{N}$, where $\psi_{k, n}(\alpha, \lambda, p)$ is given by (13).

4 Family of Class Preserving Integral Operators

In this section, we discuss some class preserving integral operators. We recall here the Komatu operator [8] defined by

$$
\begin{equation*}
\mathcal{H}(z)=\mathcal{P}_{c, p}^{d} f(z)=\frac{(c+p)^{d}}{\Gamma(d) z^{c}} \int_{0}^{z} t^{c-1}\left(\log \frac{z}{t}\right)^{d-1} f(t) d t \tag{27}
\end{equation*}
$$

where $d>0, c>-p$ and $z \in E$.
Also we recall the generalized Jung-Kim-Srivastava integral operator [7] defined by

$$
\begin{equation*}
\mathcal{I}(z)=\mathcal{Q}_{c, p}^{d} f(z)=\binom{d+c+p-1}{c+p-1} \frac{d}{z^{c}} \int_{0}^{z} t^{c-1}\left(1-\frac{t}{z}\right)^{d-1} f(t) d t \tag{28}
\end{equation*}
$$

Theorem 4 If $f(z) \in \mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$, then $\mathcal{H}(z) \in \mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$.

Proof. Let the function $f(z) \in \mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$ be defined by (2), then it can be easily verified that

$$
\begin{equation*}
\mathcal{H}(z)=z^{p}-\sum_{k=1}^{\infty}\left(\frac{c+p}{c+k+p}\right)^{d} a_{k+p} z^{k+p} \quad\left(a_{k+p} \geq 0, p \in \mathbb{N}\right) \tag{29}
\end{equation*}
$$

Now $\mathcal{H}(z) \in \mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$ if

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{[k(1+\beta)+p-\delta] \psi_{k, n}(\alpha, \lambda, p)}{(p-\delta)}\left(\frac{c+p}{c+k+p}\right)^{d} a_{k+p} \leq 1 \tag{30}
\end{equation*}
$$

Now, by Theorem 2, $f(z) \in \mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$ if and only if

$$
\sum_{k=1}^{\infty} \frac{[k(1+\beta)+p-\delta] \psi_{k, n}(\alpha, \lambda, p)}{(p-\delta)} a_{k+p} \leq 1
$$

Since $\frac{c+p}{c+k+p} \leq 1$ for $k \in \mathbb{N}$, then (30) holds true. Therefore $\mathcal{H}(z) \in \mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$.
Theorem 5 Let $d>0, c>-p$ and $f(z) \in \mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$. Then $\mathcal{H}(z)$ defined by (27) is p-valent in the disk $|z|<R_{1}$, where

$$
\begin{equation*}
R_{1}=\inf _{k}\left\{\frac{p[k(1+\beta)+p-\delta](c+k+p)^{d} \psi_{k, n}(\alpha, \lambda, p)}{(k+p)(c+p)^{d}(p-\delta)}\right\}^{\frac{1}{k}} \tag{31}
\end{equation*}
$$

Proof. In order to prove the assertion, it is enough to show that

$$
\begin{equation*}
\left|\frac{\mathcal{H}^{\prime}(z)}{z^{p-1}}-p\right| \leq p \tag{32}
\end{equation*}
$$

Now, in view of (29), we get

$$
\begin{aligned}
\left\lvert\, \frac{\mathcal{H}^{\prime}(z)}{z^{p-1}}\right. & -p\left|=\left|-\sum_{k=1}^{\infty}(k+p)\left(\frac{c+p}{c+k+p}\right)^{d} a_{k+p} z^{k}\right|\right. \\
& \leq \sum_{k=1}^{\infty}(k+p)\left(\frac{c+p}{c+k+p}\right)^{d} a_{k+p}|z|^{k}
\end{aligned}
$$

This expression is bounded by p if

$$
\begin{equation*}
\sum_{k=1}^{\infty} \frac{(k+p)}{p}\left(\frac{c+p}{c+k+p}\right)^{d} a_{k+p}|z|^{k} \leq 1 \tag{33}
\end{equation*}
$$

Given that $f(z) \in \mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$, so in view of Theorem 2, we have

$$
\sum_{k=1}^{\infty} \frac{[k(1+\beta)+p-\delta] \psi_{k, n}(\alpha, \lambda, p)}{(p-\delta)} a_{k+p} \leq 1
$$

Thus, (33) holds if

$$
(k+p)\left(\frac{c+p}{c+k+p}\right)^{d} a_{k+p}|z|^{k} \leq \frac{p[k(1+\beta)+p-\delta] \psi_{k, n}(\alpha, \lambda, p)}{(p-\delta)}, \quad k \in \mathbb{N}
$$

that is

$$
|z| \leq\left\{\frac{p[k(1+\beta)+p-\delta](c+k+p)^{d} \psi_{k, n}(\alpha, \lambda, p)}{(k+p)(c+p)^{d}(p-\delta)}\right\}^{\frac{1}{k}}
$$

The result follows by setting $|z|=R_{1}$.
Following similar steps as in the proofs of Theorem 4.1 and Theorem 4.2, we can state the following two theorems concerning the generalized Jung-Kim-Srivastava integral operator $\mathcal{I}(z)$.

Theorem 6 If $f(z) \in \mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$, then $\mathcal{I}(z) \in \mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$.
Theorem 7 Let $d>0, c>-p$ and $f(z) \in \mathcal{T}_{p, \lambda}^{n, \alpha}(\delta, \beta)$. Then $\mathcal{I}(z)$ defined by (28) is p-valent in the disk $|z|<R_{2}$, where

$$
\begin{equation*}
R_{2}=\inf _{k}\left\{\frac{p[k(1+\beta)+p-\delta] \psi_{k, n}(\alpha, \lambda, p)}{(k+p)((p-\delta)} \frac{(p+c+d)_{k}}{(p+c)_{k}}\right\}^{\frac{1}{k}} \tag{34}
\end{equation*}
$$

References

[1] A. Akbarally, M. Darus, Applications of fractional calculus to k-uniformly starlike and k-uniformly convex functions of order α, Tamkang J. Math., 38(2), 2007, 103-109.
[2] F. M. Al-Oboudi, On univalent functions defined by a generalized Salagean operator, Int. J. Math. Math. Sc., 2004(27), 2004, 1429-1436.
[3] F. M. Al-Oboudi, K. A. Al-Amoudi, On classes of analytic functions related to conic domains, J. Math. Anal. Appl., 339(1), 2008, 655-667.
[4] F. M. Al-Oboudi, K. A. Al-Amoudi, Subordination results for classes of analytic functions related to conic domains defined by a fractional operator, J. Math. Anal. Appl., 354, 2009, 412-420.
[5] S. S. Eker, B. Şeker, On a class of multivalent functions defined by Salagean operator, General Math., 15(2-3), 2007, 154-163.
[6] A. W. Goodman, On uniformly starlike functions, J. Math. Anal. Appl., 155, 1991, 364-370.
[7] S. M. Khairnar, M. More, On a subclass of multivalent β - uniformly starlike and convex functions defined by a linear operator, IAENG Int. J. Appl. Math., Doi: 39:3, IJAM3-39-06-2009.
[8] G. Murugusundaramoorthy, N. Magesh, An application of second order differential inequalities based on linear and integral operators, Int. J. Math. Sci. Engg. Appl., 2(1), 2008, 105-114.
[9] S. Owa, On distortion theorems I, Kyungpook Math J., 18(1), 1978, 53-59.
[10] S. Owa, H. M. Srivastava, Univalent functions and starlike generalized hypergeometric functions, Canad J. Math., 39(5), 1987, 1057-1077.
[11] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc., 118, 1993, 189-196.
[12] G. S. Sălăgean, Subclasses of univalent functions, in: Complex Analysis, Proc. 5th Rom.-Finn. Semin., Part I, Bucharest 1981, in: Lecture Notes in Math., vol. 1013, 1983, 362-372.
[13] J. M. Shenan, On a subclass of β-uniformly convex functions defined by DziokSrivastava linear operator, J. Fundamental Sci., 3, 2007, 177-191.
[14] S. Ishikawa, H. M. Srivastava, S. Owa, Eds., Univalent Functions, Fractional Calculus and Their Applications, Ellis Horwood Series: Mathematics and Its Applications, Ellis Horwood, Chichester, UK, 1989.

Tariq O. Salim

Al-Azhar University-Gaza
Department of Mathematics
Gaza, P.O.Box 1277, Palestine
e-mail: t.salim@alazhar.edu.ps

[^0]: ${ }^{1}$ Received 14 April, 2010
 Accepted for publication (in revised form) 30 May, 2011

