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Existence Results for some Integral Equation
with Modified Argument 1

Monica Lauran

Abstract

One of the most important tool in establishing existence or uniqueness theo-
rems for integral equations in the classical Banach’s contraction mapping prin-
ciple or some of its generalizations.
In this paper we shall illustrate how one can establish existence results and
approximate the solutions of certain integral equations in the case when the
contraction mapping principle does not apply, but we are able to use instead
the technique oimations f nonexpansive mappings.
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1 Introduction

Most existence or existence and uniqueness theorems for integral equations are usu-
ally obtained by means of fixed point technique, e.g. by Schauder’s fixed point
theorem or by the contractions mapping principle. One of the most important tool
in establishing existence or uniqueness theorems for integral equations in the classi-
cal Banach’s contraction mapping principle or some of its generalizations.
In this paper we shall illustrate how one can approximate the solutions of certain in-
tegral equations in the case when the contraction mapping principle does not apply,
but we are able to use instead the technique of nonexpansive mappings.
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2 Preliminaries

The content of this section is taken from [2] and [5].
Let (X, d) be a metric space. A mapping T : X → X is said to be an α-contraction
if there exists α ∈ [0, 1) such that

d(Tx, Ty) ≤ αd(x, y), ∀x, y ∈ X.

The strict contraction condition ensure the existence and uniquness of fixed point
for a α-contraction in a complete metric space and also the convergence of Picard
iteration, defined by x0 ∈ X and

xn+1 = Txn, n = 0, 1, 2, ...

to that fixed point. In the case when α = 1, T is said to be nonexpansive.
As a complete study of nonexpansive mappings with respect to their fixed points
could be better done in a normed space setting, we shall present some concepts and
results that will be used later in the paper. Let K be a nonempty subset of a real
normed linear space E and let T : K → K be a map. A point x ∈ K is called a fixed
point of T if Tx = x. In this settings, T is nonexpansive if

‖Tx− Ty‖ ≤ ‖x− y‖ , ∀x, y ∈ K.

We can now formulate one of the most important fixed point theorems for nonex-
pansive mappings, due to Browder, Ghode and Kirk, see for example [1]

Theorem 2.1 Let K be a nonempty closed convex and bounded subset of a uniformly
banach space E. Then any nonexpansive mapping T : K → K has at least a fixed
point.

Let K be a convex subset of a normed linear space E and let T : K → K be a self
mapping. For x0 ∈ K and λ ∈ [0, 1] the sequence xn defined by

xn+1 = (1− λ) · xn + λ · Txn, n = 0, 1, 2...

is usually called Krasnoselskij iteration.
For x0 ∈ K the sequence xn defined by

xn+1 = (1− λn) · xn + λn · Txn, n = 0, 1, 2...

where λn ⊂ [0, 1] is a sequence of real number satisfying some appropiate condition,
is called Mann iteration.

Theorem 2.2 ([4]) Let K be a subset of a Banach space E and let T : K → K be a
nonexpansive mapping. For arbitrary x0 ∈ K, consider the Mann iteration process
xn under the following assumptions:

(a) xn ∈ K for all positive integers;
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(b) 0 ≤ λn ≤ b < 1 for all positive integers;

(c)
∑

∞

n=0 λn = ∞. If xn is bounded, then xn − Txn → 0 as n → ∞.

The following corolaries will be particulary important for application part of our
paper.

Corollary 2.1 ([5]) Let K be a convex and compact subset of a Banach space E
and let T : K → K be a nonexpansive mapping. If the Mann iteration process xn
satisfies assumptions (a)-(c) in Theorem 2.2 ,then xn converges strongly to a fixed
point of T.

Corollary 2.2 ([5]) Let K be a closed bounded convex subset of a real normed space
E and T : K → K be a nonexpansive mapping. If I − T maps closed bounded
subset of E into closed subset of E and xn is the Mann iteration, with λn satisfying
assuptions (a)-(c) in Theorem 2.2, then xn converges strongly to a fixed point of T
in K.

3 Existence and uniqueness theorems for some integral

equations

Consider the following integral equation:

(1) y(x) = f(x) +

t
∫

x0

K(x, y(y(x)))dx,

where x0, t ∈ [a, b], y, f ∈ C[a, b], K ∈ C([a, b]× [a, b]).
Denote

cx = max{x− a, b− x}, ∀x ∈ [a, b],

and

(∗)CL = {y ∈ C([a, b]× [a, b] : |y(t1)− y(t2)| ≤ L · |t1 − t2| ,∀t1, t2 ∈ [a, b]};L > 0

Theorem 3.1 Assume that the following condition are satisfied:

(i) K ∈ C([a, b]× [a, b]);

(ii) ∃L1 > 0, L2 > 0 such that

|K(s, u)−K(s, v)| ≤ L1 · |u− v| , ∀s, u, v ∈ [a, b],

and
|f(t1)− f(t2)| ≤ L2 · |t1 − t2| , ∀t1, t2 ∈ [a, b].

(iii) If L is the Lipschitz constant involved in (*), then

M = max{|K(s, u)| : s, u ∈ [a, b]}, and M + L2 ≤ L
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(iv) If ∃x0 ∈ [a, b] such that |f(x)| ≤ f(x0) then, either:

(a) M · cx0
≤ cy0 , y0 = f(x0); or

(b) x0 = a, M · (b− a) ≤ b− y0, K(s, u) ≥ 0, ∀s, u ∈ [a, b]; or

(c) x0 = b, M · (b− a) ≤ y0 − a, K(s, u) ≥ 0, ∀s, u ∈ [a, b];

(v) L1 · (L+ 1) · cx0
≤ 1

Then there exists at least solutions of (1) in CL wich can be approximate by the
Krasnoselskij iteration

yn+1 = (1− λ) · yn + λf(x) + λ

t
∫

x0

K(x, yn(yn(x)))dx, t ∈ [a, b], n ≥ 1

where λ ∈ (0, 1) and y1 ∈ CL.

Proof. The technique of proof is basically the one introduce in [2].
Consider the integral operator A : CL → C[a, b]

(Ay)(t) = f(t) +

t
∫

x0

K(s, y(y(s)))ds, x0, t ∈ [a, b].

It is clear that y ∈ CL is a solution of (1) if only if y is a fixed point of A, that
is y = Ay. We prove that CL is an invariant set with respect to A, i.e.,we have
A(CL) ⊂ CL.
If first condition (a) holds, then for any y ∈ CL and t ∈ [a, b] we have:

|(Ay)(t)| =

∣

∣

∣

∣

∣

∣

f(t) +

t
∫

x0

K(s, y(y(s)))ds

∣

∣

∣

∣

∣

∣

≤ |f(t)|+

t
∫

x0

|K(s, y(y(s)))| ds

≤ f(x0) +M · |t− x0| = f(x0) +M · cx0
≤ f(x0) + cy0 ≤ b

|(Ay)(t)| ≥ |f(t)| −

∣

∣

∣

∣

∣

∣

t
∫

x0

K(s, y(y(s)))ds

∣

∣

∣

∣

∣

∣

≥ −f(x0)−M · |t− x0|

≥ −f(x0)− cy0 ≥ a

So, ∀y ∈ CL we obtaine (Ay)(t) ∈ C[a, b]. We show that Ay ∈ CL, ∀y ∈ CL.
Now, for ∀t1, t2 ∈ [a, b] we have

|(Ay)(t1)− (Ay)(t2)| ≤ |f(t1)− f(t2)|+

∣

∣

∣

∣

∣

∣

t1
∫

x0

K(s, y(y(s)))ds −

t2
∫

x0

K(s, y(y(s)))ds

∣

∣

∣

∣

∣

∣

≤ |f(t1)− f(t2)|+

∣

∣

∣

∣

∣

∣

t2
∫

t1

K(s, y(y(s)))ds

∣

∣

∣

∣

∣

∣

≤ L2 · |t1 − t2|+

t2
∫

t1

|K(s, y(y(s)))| ds
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≤ L2 · |t1 − t2|+M · |t1 − t2| = (L2 +M) · |t1 − t2| ≤ L · |t1 − t2|

So, (Ay) ∈ CL, ∀y ∈ CL. In a similar way we treat the cases (b) and (c).
Let y, z ∈ CL and t ∈ [a, b]. Then

|(Ay)(t)− (Ay)(z)| =

∣

∣

∣

∣

∣

∣

t
∫

x0

K(s, y(y(s)))ds −

t
∫

x0

K(s, z(z(s)))ds

∣

∣

∣

∣

∣

∣

≤

≤

t
∫

x0

|K(s, y(y(s)))−K(s, z(z(s)))| ds ≤

t
∫

x0

L1 · |y(y(s))− z(z(s))| ds =

= L1 ·

t
∫

x0

|y(y(s))− y(z(s)) + y(z(s)) − z(z(s))| ds ≤

L1 ·

t
∫

x0

(|y(y(s))− y(z(s))|+ |y(z(s)) − z(z(s))|)ds

≤ L1 ·



L ·

t
∫

x0

|y(s)− z(s)| ds+ max
t∈[a,b]

|y(t)− z(t)| · (t− x0)





Now, by applying the norm in last inequalitie, we get

||Ay −Az| |C[a,b] ≤ L1 · (L+ 1) · cx0
· ||y − z| |C[a,b]

wich, in view of hypotesis (vi), proves that A is nonexpansive, hence continuous.
Now, apply the Schauder’s fixed point theorem, a has at least a fixed point. The
second part of conclusion is given by Corollary 2.1 and Corollary 2.2.

We consider the equation

(2) y(x) = f(x) +

t
∫

x0

K(x, y(x), y(y(x)))dx,

where y, f ∈ C[a, b] and K ∈ C([a, b]× [a, b] × [a, b]) are given.
Denote cx = max{x− a, b− x}, ∀x ∈ [a, b] and

(∗)CL = {y ∈ C([a, b]× [a, b] : |y(t1)− y(t2)| ≤ L · |t1 − t2| ,∀t1, t2 ∈ [a, b]};L > 0

Theorem 3.2 Assume that for (2), the following conditions are satisfied:

(i) K ∈ C([a, b]× [a, b]× [a, b]);
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(ii) ∃L1 > 0, L2 > 0 such that

|K(s, u1, u2)−K(s, v1, v2)| ≤ L1 · (|u1 − v1|+ |u2 − v2|), ∀s, ui, vi ∈ [a, b], i = 1, 2

and

|f(t1)− f(t2)| ≤ L2 · |t1 − t2| , ∀t1, t2 ∈ [a, b].

(iii) If L is the Lipschitz constant involved in (*), then

M = max{|K(s, u, v)| : s, u, v ∈ [a, b]}, and M + L2 ≤ L

(iv) If ∃x0 ∈ [a, b] such that |f(x)| ≤ f(x0) then, either:

(a) M · cx0
≤ cy0 , y0 = f(x0); or

(b) x0 = a, M · (b− a) ≤ b− y0, K(s, u) ≥ 0, ∀s, u ∈ [a, b];or

(c) x0 = b, M · (b− a) ≤ y0 − a, K(s, u) ≥ 0, ∀s, u ∈ [a, b];

(v) L1 · (L+ 2) · cx0
≤ 1.

Then there exists at least one solutions in CL of (2).

Proof. It is know that CL is a nonempty convex and compact subset of the
Banach space (C[a, b], ‖·‖), where ‖·‖ is the usual sup norm. Consider the integral
operator

A : CL → C[a, b]

(Ay)(t) = f(t) +

t
∫

x0

K(s, y(s), y(y(s)))ds, x0, t ∈ [a, b], y ∈ CL

The solutions of equation (2) is the fixed points of integral operator A.
We will show that A(CL) ⊂ CL.
In the case (a), we have

|(Ay)(t)| =

∣

∣

∣

∣

∣

∣

f(t) +

t
∫

x0

K(s, y(s), y(y(s)))ds

∣

∣

∣

∣

∣

∣

≤ |f(t)|+

t
∫

x0

|K(s, y(s), y(y(s)))| ds ≤

≤ |f(x0)|+M · |t− x0| ≤ f(x0) +M · cx0
≤ f(x0) + cy0 ≤ b

|(Ay)(t)| ≥ |f(t)|−

t
∫

x0

|K(s, y(s), y(y(s)))| ds ≥ |f(t)|−M ·|t− x0| ≥ −f(x0)−cy0 ≥ a

So,Ay ∈ [a, b].Let us prove that Ay ∈ CL, ∀y ∈ CL.
Let t1, t2 ∈ [a, b].

|(Ay)(t1)− (Ay)(t2)| ≤ |f(t1)− f(t2)|+

∣

∣

∣

∣

∣

∣

t2
∫

t1

K(s, y(s), y(y(s)))ds

∣

∣

∣

∣

∣

∣

≤ L2 · |t1 − t2|+
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+M · |t1 − t2| ≤ L · |t1 − t2| .

So, Ay ∈ CL, ∀y ∈ CL.
Let y, z ∈ C[a, b]

|(Ay)(t)− (Az)(t)| ≤

t
∫

x0

|K(s, y(s), y(y(s)))−K(s, z(s), z(z(s)))| ds ≤

≤ L1 ·

t
∫

x0

(|y(s)− z(s)|+ |y(y(s))− z(z(s))|)ds =

= L1 ·

t
∫

x0

(|y(s)− z(s)|+ |y(y(s))− y(z(s)) + y(z(s))− z(z(s))|)ds ≤

L1 ·





t
∫

x0

|y(s)− z(s)| ds+

t
∫

x0

(|y(y(s))− y(z(s))| + |y(z(s))− z(z(s))|)ds





≤ L1





t
∫

x0

|y(s)− z(s)|+ L ·

t
∫

x0

|y(s)− z(s)| ds+

t
∫

x0

max
t∈[a,b]

|y(t)− z(t)| ds



 .

Now, by letting maximum in last inequality, we get

‖Ay −Az‖C[a,b] ≤ L1 · (L+ 2) · cx0
· ‖y − z‖C[a,b]

which, in view of condition (v), proves that A is nonexpansive, hence continuos. Ap-
plying the Schauder’s fixed point theorem we obtain the conclusion of the theorem.

Particular case

If f(x) ≡ y0(const.), then by Theorem 3.1 we find the results in [2].
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