Note on the Grüss Inequality ${ }^{1}$

Xin-Kuan Chai, Yu Miao

Abstract

In the present note, we establish several new Grüss type inequalities which extend some known results.

2000 Mathematics Subject Classification: 26D15.
Key words and phrases: Inequality, Grüss type, random variable.

1 Introduction

Let f and g be two bounded functions defined on $[a, b]$ with $\gamma_{1} \leq f(x) \leq \Gamma_{1}$ and $\gamma_{2} \leq g(x) \leq \Gamma_{2}$, where $\gamma_{1}, \gamma_{2}, \Gamma_{1}, \Gamma_{2}$ are four constants. Then the classic Grüss inequality reads as follows:

$$
\frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x-\frac{1}{b-a} \int_{a}^{b} f(x) d x \frac{1}{b-a} \int_{a}^{b} g(x) d x \leq \frac{1}{4}\left(\Gamma_{1}-\gamma_{1}\right)\left(\Gamma_{2}-\gamma_{2}\right) .
$$

In the years thereafter, numerous generalizations, extensions and variants of Grüss inequality have appeared in the literatures (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]). The purpose of the present note is to establish some new forms of the inequality of Grüss type.

2 Main results and remarks

Theorem 1 Let $n \geq 1$ and assume that $x_{1}, \cdots, x_{n} \in[a, b]$ and $f:[a, b] \rightarrow \mathbb{R}$ is an absolutely continuous function with $\gamma \leq f^{\prime}(x) \leq \Gamma$ for all $x \in[a, b]$, where $\gamma, \Gamma \in \mathbb{R}$.

[^0]Then we have

$$
\begin{aligned}
& \gamma F_{1}\left(x_{1}, \cdots, x_{n}\right)-\Gamma F_{2}\left(x_{1}, \cdots, x_{n}\right) \\
& \quad \leq \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
& \quad \leq \Gamma F_{1}\left(x_{1}, \cdots, x_{n}\right)-\gamma F_{2}\left(x_{1}, \cdots, x_{n}\right),
\end{aligned}
$$

where

$$
F_{1}\left(x_{1}, \cdots, x_{n}\right)=\sum_{i=1}^{n} \frac{\left(x_{i}-a\right)^{2}}{2 n(b-a)}, F_{2}\left(x_{1}, \cdots, x_{n}\right)=\sum_{i=1}^{n} \frac{\left(b-x_{i}\right)^{2}}{2 n(b-a)} .
$$

Remark 1 From the above result, we can give the following well-known inequalities.
(1) Taking $x_{1}=a, x_{2}=b$, then we have

$$
\begin{equation*}
\left|\frac{1}{b-a} \int_{a}^{b} f(x) d x-\frac{f(a)+f(b)}{2}\right| \leq \frac{1}{4}(\Gamma-\gamma)(b-a) . \tag{1}
\end{equation*}
$$

(2) Taking $x_{1}=x_{2}=\frac{a+b}{2}$, we obtain a sharper bound than that stated in [5, 8]

$$
\begin{equation*}
\left|\frac{1}{b-a} \int_{a}^{b} f(x) d x-f\left(\frac{a+b}{2}\right)\right| \leq \frac{1}{8}(\Gamma-\gamma)(b-a) . \tag{2}
\end{equation*}
$$

Theorem 2 Assume that $a \leq x_{1} \leq \frac{a+b}{2} \leq x_{2} \leq b$ and $f:[a, b] \rightarrow \mathbb{R}$ is an absolutely continuous function with $\gamma \leq f^{\prime}(x) \leq \Gamma$ for all $x \in[a, b]$, where $\gamma, \Gamma \in \mathbb{R}$. Then we have

$$
\begin{align*}
& \gamma G_{1}\left(x_{1}, x_{2}\right)-\Gamma G_{2}\left(x_{1}, x_{2}\right) \\
& \quad \leq \frac{1}{b-a} \int_{a}^{b} f(x) d x-\frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2} \tag{3}\\
& \leq \Gamma G_{1}\left(x_{1}, x_{2}\right)-\gamma G_{2}\left(x_{1}, x_{2}\right)
\end{align*}
$$

where

$$
\begin{aligned}
& G_{1}\left(x_{1}, x_{2}\right)=\frac{\left(x_{1}-a\right)^{2}}{2(b-a)}+\frac{\left(2 x_{2}-a-b\right)^{2}}{8(b-a)}, \\
& G_{2}\left(x_{1}, x_{2}\right)=\frac{\left(b-x_{2}\right)^{2}}{2(b-a)}+\frac{\left(2 x_{1}-a-b\right)^{2}}{8(b-a)} .
\end{aligned}
$$

Remark 2 If we take $n=2, x_{1}=x_{2}=\frac{a+b}{2}$ or $x_{1}=a, x_{2}=b$, then the inequality (2) can be obtained, and

$$
\begin{equation*}
\left|\frac{1}{b-a} \int_{a}^{b} f(x) d x-\frac{f(a)+f(b)}{2}\right| \leq \frac{1}{8}(\Gamma-\gamma)(b-a) . \tag{4}
\end{equation*}
$$

From Theorem 2 and 1, we have

Theorem 3 Assume that $a \leq x_{1} \leq \frac{a+b}{2} \leq x_{2} \leq b$ and $f:[a, b] \rightarrow \mathbb{R}$ is an absolutely continuous function with $\gamma \leq f^{\prime}(x) \leq \Gamma$ for all $x \in[a, b]$, where $\gamma, \Gamma \in \mathbb{R}$. Then we have

$$
\begin{align*}
& \max \left\{\gamma G_{1}\left(x_{1}, x_{2}\right)-\Gamma G_{2}\left(x_{1}, x_{2}\right), \gamma F_{1}\left(x_{1}, x_{2}\right)-\Gamma F_{2}\left(x_{1}, x_{2}\right)\right\} \\
\leq & \frac{1}{b-a} \int_{a}^{b} f(x) d x-\frac{f\left(x_{1}\right)+f\left(x_{2}\right)}{2} \tag{5}\\
\leq & \min \left\{\Gamma G_{1}\left(x_{1}, x_{2}\right)-\gamma G_{2}\left(x_{1}, x_{2}\right), \Gamma F_{1}\left(x_{1}, x_{2}\right)-\gamma F_{2}\left(x_{1}, x_{2}\right)\right\} .
\end{align*}
$$

Remark 3 Here we need explain that the bounds in Theorem 3 is reasonable. (1) and (4) show that Theorem 2 is better than Theorem 1 in some cases. Thus, it is enough to show that the bounds in Theorem 1 is better than ones in Theorem 2. For the convenience, let $a=0, b=1$ and $\gamma=0, \Gamma=1$. Then

$$
\begin{aligned}
& \Gamma G_{1}\left(x_{1}, x_{2}\right)-\gamma G_{2}\left(x_{1}, x_{2}\right)-\left(\Gamma F_{1}\left(x_{1}, x_{2}\right)-\gamma F_{2}\left(x_{1}, x_{2}\right)\right) \\
= & \frac{\left(1-x_{2}\right)^{2}}{2}+\frac{\left(1-2 x_{1}\right)^{2}}{8}-\frac{x_{1}^{2}}{4}-\frac{x_{2}^{2}}{4} \\
= & \frac{5-8 x_{2}-4 x_{1}+2 x_{2}^{2}+2 x_{1}^{2}}{8}
\end{aligned}
$$

for any $x_{1} \in[0,1 / 2], x_{2} \in[1 / 2,1]$. If we choose $x_{1}=0$ and $x_{2}=5 / 8$, then it follows that

$$
\frac{5-8 x_{2}-4 x_{1}+2 x_{2}^{2}+2 x_{1}^{2}}{8}>0,
$$

which implies the desired claim.
Let X be a \mathbb{R}-valued random variable and $\mathbb{E} X$ denote the mathematical expectation of X, then we have the following

Theorem 4 Let X be a \mathbb{R}-valued random variable and f, g two functions with $\mathbb{E}|f(X)|<\infty$ and $\phi \leq g(X) \leq \Phi$ a.e. for some constants ϕ, Φ. Then we have

$$
\begin{align*}
|\mathbb{E}(f(X) g(X))-\mathbb{E} f(X) \mathbb{E} g(X)| & \leq \frac{1}{2}(\Phi-\phi) \mathbb{E}|f(X)-\mathbb{E} f(X)| \\
& =(\Phi-\phi) \mathbb{E}\left[f(X)-\mathbb{E} f(X) 1_{\{f \geq \mathbb{E} f(X)\}}\right] \tag{6}\\
& =(\Phi-\phi) \mathbb{E}\left[\mathbb{E} f(X)-f(X) 1_{\{f<\mathbb{E} f(X)\}}\right] .
\end{align*}
$$

Remark 4 (1) If X possesses uniform distribution on the support interval $[a, b]$, then we have

$$
\begin{aligned}
\left\lvert\, \frac{1}{b-a} \int_{a}^{b} f(x) g(x) d x\right. & \left.-\frac{1}{(b-a)^{2}} \int_{a}^{b} f(x) d x \int_{a}^{b} g(x) d x \right\rvert\, \\
& \leq \frac{1}{2}\left(\int_{a}^{b}\left|f(x)-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right| d x\right)(\Phi-\phi)
\end{aligned}
$$

which was given in [1].
(2) Let X be a \mathbb{R}-valued random variable and $f(X)=(X-\mathbb{E} X)^{2}$ with $\mathbb{E} X^{2}<\infty$ and $\phi \leq g(X) \leq \Phi$ a.e. for some constants ϕ, Φ. Then we have

$$
\begin{align*}
& \left|\mathbb{E}\left((X-\mathbb{E} X)^{2} g(X)\right)-\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right] \mathbb{E} g(X)\right| \\
\leq & \frac{1}{2}(\Phi-\phi) \mathbb{E}\left|(X-\mathbb{E} X)^{2}-\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right]\right| \tag{7}\\
= & (\Phi-\phi) \mathbb{E}\left\{\left[(X-\mathbb{E} X)^{2}-\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right]\right] 1_{\left\{(X-\mathbb{E} X)^{2} \geq \mathbb{E}\left[(X-\mathbb{E} X)^{2}\right\}\right.}\right\} \\
= & (\Phi-\phi) \mathbb{E}\left\{\left[\mathbb{E}\left[(X-\mathbb{E} X)^{2}-(X-\mathbb{E} X)^{2}\right]\right] 1_{\left\{(X-\mathbb{E} X)^{2}<\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right\}\right.}\right\} .
\end{align*}
$$

In particular, if X possesses uniform distribution on the support interval $[a, b]$ and $g(x)$ is a twice differentiable mapping on (a, b) with $\phi \leq g^{\prime \prime}(X) \leq \Phi$ a.e. for some constants ϕ, Φ, then we have

$$
\begin{aligned}
& \left|\mathbb{E}\left((X-\mathbb{E} X)^{2} g(X)\right)-\mathbb{E}\left[(X-\mathbb{E} X)^{2}\right] \mathbb{E} g(X)\right| \\
= & \frac{1}{b-a}\left|\int_{a}^{b} g(x) d x-\frac{(b-a)(g(a)+g(b))}{2}+\frac{1}{12}(b-a)^{2}\left(g^{\prime}(b)-g^{\prime}(a)\right)\right| \\
\leq & \frac{1}{36 \sqrt{3}}(\Phi-\phi)(b-a)^{2} .
\end{aligned}
$$

(3) Let X possess uniform distribution on the support interval $[a, b]$ and $f(X)=$ X with $\mathbb{E}|X|<\infty$ and $\phi \leq g^{\prime}(X) \leq \Phi$ a.e. for some constants ϕ, Φ. Then we have

$$
\left|\frac{(b-a)(g(a)+g(b))}{2}-\int_{a}^{b} g(x) d x\right| \leq \frac{1}{8}(\Phi-\phi)(b-a)^{2} .
$$

Theorem 5 Let X be a \mathbb{R}-valued random variable and f, g two non-negative functions with $0 \leq g(X) \leq f(X) \leq \Gamma$ a.e. for some constant Γ. Then we have

$$
|\mathbb{E}[f(X) g(X)]-\mathbb{E} f(X) \mathbb{E} g(X)| \leq \frac{\Gamma^{2}}{4}
$$

Corollary 1 Let X be $a \mathbb{R}$-valued random variable and f, g two non-negative functions with $0 \leq g(X), f(X) \leq \Gamma$ a.e. for some constant Γ. In addition, let $F=$ $\{f(X) \geq g(X)\}, G=\{f(X)<g(X)\}$, then we have

$$
\left|\mathbb{E} f(X) g(X)-\mathbb{E} f(X) \mathbb{E} g(X)+\mathbb{E}\left[|f(X)-g(X)| 1_{G}\right] \mathbb{E}\left[|f(X)-g(X)| 1_{F}\right]\right| \leq \frac{\Gamma^{2}}{4}
$$

Remark 5 In the case that X possesses uniform distribution on the support interval $[0,1]$ and $\Gamma=1$, Mercer gave an upper-bound for above inequality in [9].

3 Proof of main results

Proof. [Proof of Theorem 1] It is easy to check that for any $t \in[a, b]$,

$$
\begin{align*}
f(t)-\frac{1}{b-a} \int_{a}^{b} f(x) d x & =\frac{1}{b-a}\left[\int_{a}^{t} \int_{x}^{t} f^{\prime}(y) d y d x-\int_{t}^{b} \int_{t}^{x} f^{\prime}(y) d y d x\right] \tag{8}\\
& =\frac{1}{b-a}\left[\int_{a}^{t}(y-a) f^{\prime}(y) d y-\int_{t}^{b}(b-y) f^{\prime}(y) d y\right] .
\end{align*}
$$

Thus we have

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(f\left(x_{i}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right) \\
= & \frac{1}{b-a} \sum_{i=1}^{n}\left[\int_{a}^{x_{i}}(y-a) f^{\prime}(y) d y-\int_{x_{i}}^{b}(b-y) f^{\prime}(y) d y\right] \\
\leq & \frac{1}{b-a} \sum_{i=1}^{n}\left[\frac{\Gamma}{2}\left(x_{i}-a\right)^{2}-\frac{\gamma}{2}\left(b-x_{i}\right)^{2}\right]
\end{aligned}
$$

and

$$
\sum_{i=1}^{n}\left(f\left(x_{i}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) d x\right) \geq \frac{1}{b-a} \sum_{i=1}^{n}\left[\frac{\gamma}{2}\left(x_{i}-a\right)^{2}-\frac{\Gamma}{2}\left(b-x_{i}\right)^{2}\right]
$$

which implies the desired result.
Proof. [Proof of Theorem 2] From (8), we have

$$
\begin{aligned}
& f\left(x_{1}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) d x+f\left(x_{2}\right)-\frac{1}{b-a} \int_{a}^{b} f(x) d x \\
= & \frac{1}{b-a}\left[\int_{a}^{x_{1}}(y-a) f^{\prime}(y) d y-\int_{x_{1}}^{b}(b-y) f^{\prime}(y) d y\right] \\
& +\frac{1}{b-a}\left[\int_{a}^{x_{2}}(y-a) f^{\prime}(y) d y-\int_{x_{2}}^{b}(b-y) f^{\prime}(y) d y\right] \\
= & \frac{2}{b-a}\left[\int_{a}^{x_{1}}(y-a) f^{\prime}(y) d y+\int_{x_{1}}^{\frac{a+b}{2}}\left(y-\frac{b+a}{2}\right) f^{\prime}(y) d y\right] \\
& -\frac{2}{b-a}\left[\int_{\frac{a+b}{2}}^{x_{2}}\left(\frac{b+a}{2}-y\right) f^{\prime}(y) d y+\int_{x_{2}}^{b}(b-y) f^{\prime}(y) d y\right] \\
\leq & \Gamma\left(\frac{\left(x_{1}-a\right)^{2}}{(b-a)}+\frac{\left(2 x_{2}-a-b\right)^{2}}{4(b-a)}\right)-\gamma\left(\frac{\left(x_{2}-b\right)^{2}}{(b-a)}+\frac{\left(2 x_{1}-a-b\right)^{2}}{4(b-a)}\right) .
\end{aligned}
$$

The remainder of the proof is easy.
Proof. [Proof of Theorem 4] Let $A=\{f \geq \mathbb{E} f(X)\}, \bar{A}=\{f<\mathbb{E} f(X)\}$, it follows that

$$
\begin{aligned}
& \mathbb{E}(f(X) g(X))-\mathbb{E} f(X) \mathbb{E} g(X) \\
= & \mathbb{E}\left[(f(X)-\mathbb{E} f(X))\left(1_{A}+1_{\bar{A}}\right) g(X)\right] \\
\leq & \Phi \mathbb{E}\left[(f(X)-\mathbb{E} f(X)) 1_{A}\right]+\phi \mathbb{E}\left[(f(X)-\mathbb{E} f(X)) 1_{\bar{A}}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbb{E}\left[(f(X)-\mathbb{E} f(X))\left(1_{A}+1_{\bar{A}}\right) g(X)\right] \\
\geq & \phi \mathbb{E}\left[(f(X)-\mathbb{E} f(X)) 1_{A}\right]+\Phi \mathbb{E}\left[(f(X)-\mathbb{E} f(X)) 1_{\bar{A}}\right]
\end{aligned}
$$

Since

$$
-\mathbb{E}\left[(f(X)-E f(X)) 1_{\bar{A}}\right]=\mathbb{E}\left[(f(X)-\mathbb{E} f(X)) 1_{A}\right]=\frac{1}{2} \mathbb{E}|f(X)-\mathbb{E} f(X)|,
$$

we have the following desired result

$$
|\mathbb{E}(f(X) g(X))-\mathbb{E} f(X) \mathbb{E} g(X)| \leq \frac{1}{2}(\Phi-\phi) \mathbb{E}|f(X)-\mathbb{E} f(X)|
$$

Proof. [Proof of Theorem 5] It is easy to see that

$$
\mathbb{E}[f(X) g(X)]-\mathbb{E} f(X) \mathbb{E} g(X) \leq \Gamma \mathbb{E} g(X)-[\mathbb{E} g(X)]^{2}=-\left(\mathbb{E} g(X)-\frac{\Gamma}{2}\right)^{2}+\frac{\Gamma^{2}}{4}
$$

and

$$
\mathbb{E}[f(X) g(X)]-\mathbb{E} f(X) \mathbb{E} g(X) \geq \mathbb{E} g^{2}(X)-\Gamma \mathbb{E} g(X)=\mathbb{E}\left(g(X)-\frac{\Gamma}{2}\right)^{2}-\frac{\Gamma^{2}}{4}
$$

which yield the desired result.
Proof. [Proof of Corollary 1] It is easy to see that

$$
\begin{align*}
& \mathbb{E} f(X) \mathbb{E} g(X)-\mathbb{E}[f(X) \vee g(X)] \mathbb{E}[f(X) \wedge g(X)] \\
= & \left(\mathbb{E}\left[f(X) 1_{F}\right]-\mathbb{E}\left[g(X) 1_{F}\right]\right)\left(\mathbb{E}\left[g(X) 1_{G}\right]-\mathbb{E}\left[f(X) 1_{G}\right]\right) \tag{9}\\
= & \mathbb{E}\left[|f(X)-g(X)| 1_{F}\right] \mathbb{E}\left[|f(X)-g(X)| 1_{G}\right] .
\end{align*}
$$

From $f(X) g(X)=(f(X) \vee g(X))(f(X) \wedge g(X))$, a.e. and the equation (9), we have

$$
\begin{aligned}
& \mathbb{E} f(X) g(X)-\mathbb{E} f(X) \mathbb{E} g(X)+\mathbb{E}\left[|f(X)-g(X)| 1_{G}\right] \mathbb{E}\left[|f(X)-g(X)| 1_{F}\right] \\
= & \mathbb{E}[(f(X) \vee g(X))(f(X) \wedge g(X))]-\mathbb{E}[f(X) \vee g(X)] \mathbb{E}[f(X) \wedge g(X)] .
\end{aligned}
$$

Since $0 \leq(f(X) \wedge g(X)) \leq(f(X) \vee g(X)) \leq \Gamma$ and by Theorem 5 , the desired inequality is completed.

References

[1] X. L. Cheng, J. Sun, A note on the perturbed trapezoid inequality, JIPAM. J. Inequal. Pure Appl. Math., 3(2), Article 29, 2002.
[2] S. S. Dragomir, A companion of the Grüss inequality and applications, Appl. Math. Lett., 17, 429-435, 2004.
[3] S. S. Dragomir, P. Cerone, A. Sofo, Some remarks on the trapezoid rule in numerical integration, Indian J. Pure Appl. Math., 31(5), 475-494, 2000.
[4] S. S. Dragomir, Y. J. Cho, S. S. Kim, Inequalities of Hadamard's type for Lipschitizian mappings and their applications, J. Math. Anal. Appl., 245, 489501, 2000.
[5] S. S. Dragomir, S. Wang, An inequality of Ostrowski-Grüss' type and its applications to the estimation of error bounds for some special means and for home numerical quadrature rules, Computers Math. Applic., 33(11), 15-20, 1997.
[6] N. Elezović, Lj. Marangunić, J. Pec̆arić, Some improvements of Grüss type inequality, J. Math. Inequal., 1(3), 425-436, 2007.
[7] Z. Liu, A sharp integral inequality of Ostrowski-Grüss type, Soochow J. Math., 32(2), 223-231, 2006.
[8] M. Matić, J. Pečarić, N. Ujević, Improvement and further generalization of inequalities of Ostrowski-Grüss type, Computers Math. Applic., 39(3/4), 161175, 2000.
[9] A. M. Mercer, An improvement of the Grüss inequality, JIPAM. J. Inequal. Pure Appl. Math., 6(4), Article 93, 2005.
[10] Y. Miao, Note on the discrete Ostrowski-Grüss type inequality, J. Math. Inequal., 3(1), 93-98, 2009.
[11] Y. Miao, L. M. Shen, Some general Ostrowski-Grüss type inequalities, Acta Math. Acad. Paedagog. Nyhazi. (N.S.), 24(2), 243-248, 2008.
[12] G. H. Peng, Y. Miao, A note on Gruss type inequality, Appl. Math. Sci. (Ruse), 3(8) 399-402, 2009.

Xinkuan Chai

Henan Normal University
College of Mathematics and Information Science
Henan Province, 453007, China
e-mail: chawalit.b@msu.ac.th

Yu Miao

Henan Normal University
College of Mathematics and Information Science
Henan Province, 453007, China
e-mail: yumiao728@yahoo.com.cn

[^0]: ${ }^{1}$ Received 12 April, 2010
 Accepted for publication (in revised form) 24 August, 2011

