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Note on the Griiss Inequality !

Xin-Kuan Chai, Yu Miao

Abstract

In the present note, we establish several new Griiss type inequalities which
extend some known results.
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1 Introduction

Let f and g be two bounded functions defined on [a,b] with 73 < f(z) < Ty and
vo < g(x) < Ty, where v1,72,1'1,I'y are four constants. Then the classic Griiss
inequality reads as follows:

b X ,
b i a/a f@g(@)de =7 i a/a flz)day i a/a g(x)dz < i(rl —7)(T2 —72)-

In the years thereafter, numerous generalizations, extensions and variants of
Griiss inequality have appeared in the literatures (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12]). The purpose of the present note is to establish some new forms of the
inequality of Griiss type.

2 Main results and remarks

Theorem 1 Let n > 1 and assume that x1,--- ,xy, € [a,b] and f : [a,b] — R is an
absolutely continuous function with v < f (z) <T for all z € [a,b], where v,T € R.
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Then we have

where
B (r; —a B (b—$i)2
Fl(l‘l,“‘ 7,1‘71)— E 7271(1)_01), Fg(l'l,--- ’an)_ ' 72 .

Remark 1 From the above result, we can give the following well-known inequalities.

(1) Taking x1 = a,x2 = b, then we have

b a
[ s - L0 < ey

b—a J,

1) |

W

(2) Taking x1 = x9 = aTer, we obtain a sharper bound than that stated in [5, 8]

@) \ﬁ/abf(x)dx—f(“;b)‘ <10 a)

Theorem 2 Assume thata < 1 < aTer <xy <band f:|a,b — R is an absolutely
continuous function with v < f/(x) < T for all x € [a,b], where v,I" € R. Then we
have

7G1($1,$2) I'Ga(x1,2)

(3) < / fa 331)‘;f(332)
<I'Gi(z1,22) — vGa(21, 22),
where (r1 —a)? (229 —a —b)?
e i T 8b—a)
Go(z1,19) = (;’(;_332&))2 (Qxé(;iz ;) b)?
Remark 2 If we taken =2, 1 = z9 = aTer or x1 = a,x9 = b, then the inequality

(2) can be obtained, and

/f iz~ HOEION Ly a),

From Theorem 2 and 1, we have

() =

oo

b—a
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Theorem 3 Assume thata < 1 < aTer <xy <band f:|a,b — R is an absolutely

continuous function with v < f (x) < T for all x € [a,b], where v,I' € R. Then we
have

max{yGl(ml,xg) — FGQ(l‘l,l‘g) ’)/Fl(.l‘l,l‘g) — FFQ(l‘l,l‘g)}

® <t [ e TS

<min{l'Gy(z1, 22) — vGa(z1, 22), U Fy (21, 22) — vFo (21, 22) }.

Remark 3 Here we need explain that the bounds in Theorem 3 is reasonable. (1)
and (4) show that Theorem 2 is better than Theorem 1 in some cases. Thus, it is
enough to show that the bounds in Theorem 1 is better than ones in Theorem 2. For
the convenience, let a =0,b=1 and v=0,I' =1. Then

I'Gi(x1,x2) — vGa(x1,22) — (DFy (21, 22) — YF2 (21, 22))
(1—29)® (1—221)% 23 a3

2 8 4 4
5 — 8wy — 4z + 223 + 22%

8

for any x1 € [0,1/2], 29 € [1/2,1]. If we choose x1 =0 and x2 = 5/8, then it follows
that

5 — 8xg — 4wy + 223 + 223
8

> 0,

which implies the desired claim.

Let X be a R-valued random variable and EX denote the mathematical expec-
tation of X, then we have the following

Theorem 4 Let X be a R-valued random wariable and f,g two functions with
E|f(X)| < oo and ¢ < g(X) < ® a.e. for some constants ¢, ®. Then we have

[E(f(X)g9(X)) — Ef(X)Eg(X)| <5(® — @)E[f(X) — Ef(X)]

= O)E[f(X) —Ef(X)1r>Erx)}]
— QEIES(X) — f(X){rrrx)y])-

Remark 4 (1) If X possesses uniform distribution on the support interval |a,b],

then we have
/f dm/ x)d ‘

s [ @t
1) - [ s

(6)

1
~2
(@
(@

(b—a)p?
1
<Z
-2

J

i) (@~ 0)

which was given in [1].
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(2) Let X be a R-valued random variable and f(X) = (X —EX)? with EX? < oo
and ¢ < g(X) < ® a.e. for some constants ¢, ®. Then we have

[E((X —EX)?(X)) — E[(X — EX)?|Eg(X)|
<5(® — G)E|(X ~EX)? ~ E[(X ~ EX)’]

=(® - ¢)E{[(X —EX)* — E[(X — EX)*||1{(x—rx)2>E[(X—-EX)2}}
=(® — ))E{[E[(X —EX)* — (X — EX)*||1{(x—mx)2<E[(X—EX)2} }-
In particular, if X possesses uniform distribution on the support interval [a,b]
and g(x) is a twice differentiable mapping on (a,b) with ¢ < q (X) < ® a.e. for
some constants ¢, P, then we have

E((X —EX)*9(X)) - E[(X — EX)*Eg(X)|

(7)

b —a a / ’
e L e R CA ORI )
1 2
TN A

(3) Let X possess uniform distribution on the support interval [a,b] and f(X) =
X with B|X| < 0o and ¢ < ¢ (X) < ® a.e. for some constants ¢, ®. Then we have

—a a b
[ESLIEOETICH Y

< 5@ 0)(b- .

Theorem 5 Let X be a R-valued random variable and f, g two non-negative func-
tions with 0 < g(X) < f(X) <T a.e. for some constant I'. Then we have
2

ELF (X)g(X)] ~ Ef(X)Eg(X)| < =

Corollary 1 Let X be a R-valued random variable and f,g two non-negative func-
tions with 0 < g(X), f(X) < T a.e. for some constant I'. In addition, let F' =
[£(X) = g(X)}, G = {f(X) < g(X)}, then we have

2

[EF(X)g(X) ~EF(X)Eg(X) + E[[7(X) ~ g(X)|16JE[F(X) — g(X)|1]] < =

Remark 5 In the case that X possesses uniform distribution on the support interval
[0,1] and T' =1, Mercer gave an upper-bound for above inequality in [9].

3 Proof of main results

Proof. [Proof of Theorem 1] It is easy to check that for any ¢ € [a, b],

—bia/af(x)dx [//f dyda:—//f dydm}

[ o-arwa- [o-niwa).

(8)
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Thus we have

:biazn:[/ (y—a)f (y)dy — /_b(b— )f (y)dy}
i=1 LJa .
—biazzn;[g(%— )2_%(b_$z)2:|

and

( zi) /f dx) b—a 1[—“—@)2—%(??—931-)2}

which implies the desired result.
Proof. [Proof of Theorem 2] From (8), we have

f(z1) — /f Ydx + f(x2) — —a/f
:bia [/:l(y—a)f (y)dy—/a:l(b—y)f (y)dy]

T3 i a [/am(y —a)f (y)dy — /a:(b - y)f'(y)dy}

+b

—— [/:Yy—a)f/(y)dw/: (v-"5°) f/(y)dy]
a bia [/i <bJ2ra _y> f/(?/)d?/JF/xj(b—y)f'(y)dy]

(r1 —a)? (222 —a —b)? B (xg —b)2 (221 —a — b)?
SF((b—a) BT ) ”((b—a)* 10—a) >

The remainder of the proof is easy.
Proof. [Proof of Theorem 4] Let A = {f > Ef(X)}, A = {f < Ef(X)}, it
follows that

E(f(X)g9(X)) — Ef(X)Eg(X)
=E[(f(X) —Ef(X))(1a + 14)9(X)]
<OE[(f(X) — Ef(X))1a] + ¢E[(f(X) — Ef(X))14]
and
E[(f(X) —Ef(X))(1a +11)9(X)]
>E[(f(X) —Ef(X))1a] + ®E[(f(X) — Ef(X))14].
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Since

—E[(f(X) = Ef(X)14] = E[(f(X) —Ef(X))1a] = %E\f(X) —Ef(X),
we have the following desired result

[E(f(X)g(X)) — Ef(X)Eg(X)| < S(P - 9)E|f(X) —Ef(X)].

N —

Proof. [Proof of Theorem 5| It is easy to see that

r\? 1?2

E[f(X)g(X)] — Ef (X)Eg(X) < TEg(X) — [Eg(X)J2 = — (Eg( X) - _> L
and

2 2

E[f(X)g(X)] — Ef (X)Eg(X) > Eg*(X) — TEg(X) = E <g(X) _ E) r

which yield the desired result.
Proof. [Proof of Corollary 1] It is easy to see that

Ef(X)Eg(X) — E[f(X) v g(X)E[f(X) A g(X)]
(9) =(E[f(X)1r] - E[g(X)1r]) (E[g(X)lc] — E[f(X)1c])
=E[|f(X) = g(X)NFE[lf(X) — 9(X)|1a].
From f(X)g(X) = (f(X)Vg(X))(f(X)Ag(X)),a.e. and the equation (9), we have
Ef(X)g(X) = Ef(X)Eg(X) + E[[f(X) = g(X)[1G]E[|f(X) = g(X)[1F]
=E[(f(X) v g(X)(f(X) A g(X))] = E[f(X) V g(X)E[f(X) A g(X)].

Since 0 < (f(X) A g(X)) < (f(X) Vg(X)) < T and by Theorem 5, the desired
inequality is completed.
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