Uniqueness of Meromorphic Function and its Differential Polynomial Concerning Weakly Weighted-Sharing ${ }^{1}$

Hong-Yan Xu, Yi Hu

Abstract

In this paper, we introduce the definition of weakly weighted-sharing which is between "CM" and " $I M$ ". Using the notion of weakly weighted-sharing, we investigate problems of meromorphic functions that share a small function with its differential polynomial, and give some results and also answer some questions of Kit-Wing Yu, which were also studied by L.P.Liu and Y.X. Gu[L.P. Liu and Y.X.Gu, Uniqueness of meromorphic functions that share one small function with their derivatives, Kodai. Math. J. 27 (2004), 272-279.], S.H. Lin and W.C. Lin[S.H.Lin and W.C.Lin, Uniqueness of meromorphic functions concerning weakly weighted-sharing, Kodai.Math.J.,29 (2006),269-280.].

2000 Mathematics Subject Classification: 30D30, 30D35.
Key words and phrases: Meromorphic function, Uniqueness theorem, Small function, Weakly-sharing.

1 Introduction and results

In this paper a meromorphic function will mean meromorphic in the whole complex plane. We shall use the standard notation in Nevanlinna's value distribution theory of meromorphic functions such as $T(r, f), N(r, f)$ and $m(r, f)$ (see [4] or [10]). We denote by $S(r, f)$ any quantity satisfying $S(r, f)=o(T(r, f))$ as $r \rightarrow \infty$ except possibly for a set of r of finite linear measure. A meromorphic function $a(z)$ is called a small function with respect to $f(z)$ if $T(r, a)=S(r, f)$. Let $S(f)$ be the set of meromorphic functions in the complex plane \mathbf{C} which are small functions with respect to f.

[^0]Let $a \in S(f)$, we say that two meromorphic functions f and g share $a I M$ (CM) provided that $f-a$ and $g-a$ have the same zeros ignoring (counting) multiplicities.

Mues and Steinmetz [8], Gundersen [3], Yang [12] and Yi [11], and many other authors have obtained elegant results on the uniqueness problems of entire functions that share values $C M$ or $I M$ with their first or n-th derivatives.

In 2003 , Yu [9] considered the uniqueness problem of an entire function or meromorphic function when it shares one small function with its derivative and proved the following results.

Theorem A Let $n \geq 1$, let f be a non-constant entire function, $a \in S(f)$ and $a \not \equiv 0, \infty$. If $f, f^{(n)}$ share $a C M$ and $\delta(0, f)>\frac{3}{4}$, then $f \equiv f^{(n)}$.

Theorem B Let $n \geq 1$, let f be a non-constant non-entire meromorphic function, $a \in S(f)$ and $a \not \equiv 0, \infty, f$ and a do not have any common pole. If $f, f^{(n)}$ share $a C M$ and $4 \delta(0, f)+2(8+n) \Theta(\infty, f)>19+2 n$, then $f \equiv f^{(n)}$.

In the same paper, Yu [9] posed the following open question:
Question A Can a $C M$ shared value be replaced by an $I M$ shared value in Theorem A?

Question B Is the condition $\delta(0, f)>3 / 4$ sharp in Theorem A?
Question \mathbf{C} Is the condition $4 \delta(0, f)+2(8+n) \Theta(\infty, f)>19+2 n$ sharp in Theorem B?

Question D Can the condition f and a do not have any common pole" be deleted in Theorem B?

In 2004, Liu and Gu [7] applied a different method and obtained the following results.

Theorem C Let f be a non-constant meromorphic function, $a \in S(f)$ and $a \not \equiv 0, \infty$. If $f, f^{(n)}$ share $a C M, f$ and a do not have any common pole of same multiplicity and $2 \delta(0, f)+4 \Theta(\infty, f)>5$, then $f \equiv f^{(n)}$.

Theorem D Let $n \geq 1$, let f be a non-constant entire function, $a \in S(f)$ and $a \not \equiv 0, \infty$. If $f, f^{(n)}$ share $a C M$ and $\delta(0, f)>\frac{1}{2}$, then $f \equiv f^{(n)}$.

Let

$$
\begin{equation*}
L(f)=f^{(n)}+a_{n-1} f^{(n-1)}+\cdots+a_{0} f \tag{*}
\end{equation*}
$$

be a differential polynomial on f, where $a_{j}(j=0,1, \cdots, n-1) \in S(f)$.
Question 1: what happens if $f^{(n)}$ is replaced by $L(f)$ in Theorem C and D ?
In order to state our results, we first introduce the definition of weakly weightedsharing as followed.

Definition 1 Let k be a positive integer, and let f be a meromorphic function and $a \in S(f)$.
(i) $\bar{N}(r, a ; f \mid \geq k)$ denotes the counting function of zeros of $f-a$ whose multiplicities are not greater than k, where each zero is counted only once.
(ii) $\bar{N}(r, a ; f \mid \leq k)$ denotes the counting function of zeros of $f-a$ whose multiplicities are not less than k, where each zero is counted only once.
(iii) $N_{p}(r . a ; f)=\bar{N}(r, a ; f)+\sum_{k=2}^{p} \bar{N}(r, a ; f \mid \geq k)$.

Definition 2 [5] For any complex number $c \in \mathbb{C} \cup\{\infty\}$, We denote by $\delta_{p}(c, f)$ the quantity

$$
\delta_{p}(c, f)=1-\underset{r \rightarrow \infty}{\limsup } \frac{N_{p}(r, c ; f)}{T(r, f)}
$$

where p is a positive integer. Clearly $\delta_{p}(c, f) \geq \delta(c, f)$.
Let $N_{E}(r, a)$ be the counting function of all common zeros of $f-a$ and $g-a$ with the same multiplicities, and $N_{0}(r, a)$ be the counting functions of all common zeros of $f-a$ and $g-a$ ignoring multiplicities. Denotes by $\bar{N}_{E}(r, a)$ and $\bar{N}_{0}(r, a)$ the reduced counting functions of f and g corresponding to the counting functions $N_{E}(r, a)$ and $N_{0}(r, a)$, respectively. If

$$
\bar{N}(r, a ; f)+\bar{N}(r, a ; g)-2 \bar{N}_{E}(r, a)=S(r, f)+S(r, g),
$$

then we say that f and g share a " $C M$ ". If

$$
\bar{N}(r, a ; f)+\bar{N}(r, a ; g)-2 \bar{N}_{0}(r, a)=S(r, f)+S(r, g),
$$

then we say that f and g share a " $I M$ ".
Definition 3 Let f and g be two nonconstant meromorphic functions sharing a "IM", for $a \in S(f) \bigcap S(g)$, and a positive integer k or ∞.
(i) $\bar{N}_{E}^{k}(r, a)$ denotes the counting function of zeros of $f-a$ whose multiplicities are equal to the corresponding zeros of $g-a$, both of their multiplicities are not greater than k, where each zero is counted only once.
(ii) $\bar{N}_{0}^{(k}(r, a)$ denotes the reduced counting function of zeros of $f-a$ which are zeros of $g-a$, both of their multiplicities are not less than k, where each zero is counted only once.
(iii) Let z_{0} be the zeros of $f-a$ with multiplicity p and zeros of $g-a$ with multiplicity q. Denote by $\bar{N}_{f>k}(r, a ; g)$ the reduced counting function of those zeros of $f-a$ and $g-a$ such that $p>q=k . \bar{N}_{g>k}(r, a ; f)$ is defined analogously.
(iv) $\bar{N}_{*}(r, a ; f, g)$ denotes the reduce counting function of zeros of $f-a$ whose multiplicities differ from the multiplicities of the corresponding zeros of $g-a$.
Clearly

$$
\bar{N}_{*}(r, a ; f, g) \equiv \bar{N}_{*}(r, a ; g, f) \text { and } \bar{N}_{*}(r, a ; f, g)=\bar{N}_{L}(r, a ; f)+\bar{N}_{L}(r, a ; g)
$$

Definition 4 For $a \in S(f) \bigcap S(g)$, if k is a positive integer or ∞, and

$$
\begin{aligned}
& \bar{N}(r, a ; f \mid \leq k)-\bar{N}_{E}^{k)}(r, a)=S(r, f), \bar{N}(r, a ; f \mid \geq k+1)-\bar{N}_{0}^{(k+1}(r, a)=S(r, f) ; \\
& \bar{N}(r, a ; g \mid \leq k)-\bar{N}_{E}^{k}(r, a)=S(r, g), \bar{N}(r, a ; g \mid \geq k+1)-\bar{N}_{0}^{(k+1}(r, a)=S(r, g) .
\end{aligned}
$$

Or if $k=0$ and

$$
\bar{N}(r, a ; f)-\bar{N}_{0}(r, a)=S(r, f), \quad \bar{N}(r, a ; g)-\bar{N}_{0}(r, a)=S(r, g)
$$

where $\bar{N}_{0}(r, a)$ is the reduce counting functions of all common zeros of $f-a$ and $g-a$ ignoring multiplicities, then we say f and g weakly share a with weight k. Here, we write f, g share $"(a, k)$ " to mean that f, g weakly share a with weight k.

Obviously, if f and g share $"(a, k) "$, then f and g share $"(a, p)$ " for any $p(0 \leq$ $p \leq k)$. Also, we note that f and g share a " $I M$ " or " $C M$ " if and only if f and g share " $(a, 0)$ " or " (a, ∞) ", respectively.

Question 2: Can a $C M$ shared value be replaced by weakly weighted-sharing in Theorem C and Theorem D?

In this paper, we obtain some uniqueness theorems which answer Question 1 and Question 2 as followed.

Theorem 1 Let $n \geq 1$ and $2 \leq k \leq \infty$, let f be a non-constant meromorphic function, $a \in S(f)$ and $a \not \equiv 0, \infty$. Suppose that $L(f)$ is defined by $(*)$, If $f, L(f)$ share " (a, k) " and

$$
\begin{equation*}
4 \Theta(\infty, f)+2 \delta_{2+n}(0, f)>5 \tag{1}
\end{equation*}
$$

then $f \equiv L(f)$.
Theorem 2 Let $n \geq 1$, let f be a non-constant meromorphic function, a $\in S(f)$ and $a \not \equiv 0, \infty$. Suppose that $L(f)$ is defined by $(*)$, If $f, L(f)$ share $"(a, 1) "$ and

$$
\begin{equation*}
\left(\frac{7}{2}+n\right) \Theta(\infty, f)+\frac{3}{2} \delta_{2}(0, f)+\delta_{2+n}(0, f)>n+5 \tag{2}
\end{equation*}
$$

then $f \equiv L(f)$.
Theorem 3 Let $n \geq 1$, let f be a non-constant meromorphic function, $a \in S(f)$ and $a \not \equiv 0, \infty$. Suppose that $L(f)$ is defined by $(*)$, If $f, L(f)$ share $"(a, 0) "$ and

$$
\begin{equation*}
(6+2 n) \Theta(\infty, f)+\delta_{2}(0, f)+2 \Theta(0 . f)+2 \delta_{2+n}(0, f)>(2 n+10) \tag{3}
\end{equation*}
$$

then $f \equiv L(f)$.
From Theorem 1.5-1.7 we have
Corollary 1 Let f be a non-constant entire function and $a \equiv a(z)(\not \equiv 0, \infty)$ be a meromorphic function such that $T(r, a)=S(r, f)$. If $f, L(f)$ share " $(a, k) ", k \geq 2$ and $\delta_{2+n}(0, f)>\frac{1}{2}$, or if $f, L(f)$ share $"(a, 1) "$ and $\delta_{2+n}(0, f)>\frac{3}{5}$, or if $f, L(f)$ share " $(a, 0)$ " and $\delta_{2+n}(0, f)>2-\frac{1}{2}\left(\delta_{2}(0, f)+2 \Theta(0 . f)\right)$, then $f \equiv L(f)$, where $L(f)$ is defined by $(*)$.

2 Some lemmas

Next, we introduce some notations for the following lemmas.
Lemma 1 Let f be a transcendental meromorphic function, $L(f)$ be defined by $(*)$, If $L(f) \not \equiv 0$, we have
(i) $N_{2}(r, 0 ; L) \leq N_{2+n}(r, 0 ; f)+n \bar{N}(r, \infty ; f)+S(r, f)$;
(ii) $N_{2}(r, 0 ; L) \leq T(r, L)-T(r, f)+N_{2+n}(r, 0 ; f)+S(r, f)$.

Proof: By the first fundamental theorem and the lemma of logarithmic derivatives, we get:

$$
\begin{aligned}
N_{2}(r, 0 ; L) & \leq N(r, 0 ; L)-\sum_{p=3}^{\infty} \bar{N}(r, 0 ; L \mid \geq p) \\
& =T(r, L)-m\left(r, \frac{1}{L}\right)-\sum_{p=3}^{\infty} \bar{N}(r, 0 ; L \mid \geq p)+O(1) \\
& \leq T(r, L)-m\left(r, \frac{1}{f}\right)-m\left(r, \frac{L}{f}\right)-\sum_{p=3}^{\infty} \bar{N}(r, 0 ; L \mid \geq p)+O(1) \\
& \leq T(r, L)-T(r, f)+N(r, 0 ; f)-\sum_{p=3}^{\infty} \bar{N}(r, 0 ; L \mid \geq p)+S(r, f) \\
& \leq T(r, L)-T(r, f)+N_{2+n}(r, 0 ; f)+\sum_{p=3+n}^{\infty} \bar{N}_{(p}(r, 0 ; f) \\
& -\sum_{p=3}^{\infty} \bar{N}(r, 0 ; L \mid \geq p)+S(r, f) \\
& \leq T(r, L)-T(r, f)+N_{2+n}(r, 0 ; f)+S(r, f)
\end{aligned}
$$

So this proves Lemma (ii).
Since

$$
\begin{aligned}
T(r, L) & =m(r, L)+N(r, \infty ; L) \\
& \leq m(r, f)+m\left(r, \frac{L}{f}\right)+N(r, \infty ; f)+n \bar{N}(r, \infty ; f) \\
& =T(r, f)+n \bar{N}(r, \infty ; f)+S(r, f) .
\end{aligned}
$$

From this and Lemma (ii), we can prove Lemma (i).
Lemma 2 [11] Let k be a nonnegative integer or ∞, F and G be two nonconstant meromorphic functions, F and G share " $(1, k)$ ". Let

$$
H=\left(\frac{F^{\prime \prime}}{F^{\prime}}-2 \frac{F^{\prime}}{F-1}\right)-\left(\frac{G^{\prime \prime}}{G^{\prime}}-2 \frac{G^{\prime}}{G-1}\right) .
$$

If $H \not \equiv 0,2 \leq k \leq \infty$, then
$T(r, F) \leq N_{2}(r, \infty ; F)+N_{2}(r, 0 ; F)+N_{2}(r, \infty ; G)+N_{2}(r, 0 ; G)+S(r, F)+S(r, G)$.
The same inequalities holds for $T(r, G)$.
When f and g share 1 " $I M$ ", $\bar{N}_{L}(r, 1 ; f)$ denotes the counting function of the 1-points of f whose multiplicities are greater than 1-points of g, where each zero is counted only once. Similarly, we denote $\bar{N}_{L}(r, 1 ; g), N_{E}^{1)}(r, 1 ; f)$ denotes the counting function of those simple 1-points of f and g, and $\bar{N}_{E}^{(2}(r, 1 ; f)$ denotes the counting function of those multiplicity 1-points of f and g,each point in these counting functions is counted only once. In the same way ,one can define $N_{E}^{1)}(r, 1 ; g), \bar{N}_{E}^{(2}(r, 1 ; g)$.

Lemma 3 If f, g be two nonconstant meromorphic functions such that they share " $(1,1)$ ", then

$$
2 \bar{N}_{L}(r, 1 ; f)+2 \bar{N}_{L}(r, 1 ; g)+\bar{N}_{E}^{(2}(r, 1 ; f)-\bar{N}_{f>2}(r, 1 ; g) \leq N(r, 1 ; g)-\bar{N}(r, 1 ; g)
$$

Lemma 4 Let f, g share " $(1,1)$ ". Then

$$
\bar{N}_{f>2}(r, 1 ; g) \leq \frac{1}{2} \bar{N}(r, 0 ; f)+\frac{1}{2} \bar{N}(r, \infty ; f)-\frac{1}{2} \bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+S(r, f) .
$$

Lemma 5 Let f and g be two nonconstant meromorphic functions sharing " $(1,0)$ ". Then
$\bar{N}_{L}(r, 1 ; f)++2 \bar{N}_{L}(r, 1 ; g)+\bar{N}_{E}^{(2}(r, 1 ; f)-\bar{N}_{f>1}(r, 1 ; g)-\bar{N}_{g>1}(r, 1 ; f)$
$\leq N(r, 1 ; g)-\bar{N}(r, 1 ; g)$.
Lemma 6 Let f, g share " $(1,0)$ ". Then

$$
\bar{N}_{L}(r, 1 ; f) \leq \bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)+S(r, f)
$$

Lemma 7 Let f, g share " $(1,0)$ ". Then
(i) $\bar{N}_{f>1}(r, 1 ; g) \leq \bar{N}(r, 0 ; f)+\bar{N}(r, \infty ; f)-\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+S(r, f)$;
(ii) $\bar{N}_{g>1}(r, 1 ; f) \leq \bar{N}(r, 0 ; g)+\bar{N}(r, \infty ; f)-\bar{N}_{0}\left(r, 0 ; f^{\prime}\right)+S(r, g)$;

Using the method of [1] and [2], we can prove Lemmas 2.3-2.7 easily. Here, we omit them.

3 Proof of main Theorems

Proof of Theorem 1.5

Let

$$
\begin{equation*}
F=\frac{f}{a}, \quad G=\frac{L(f)}{a} \tag{4}
\end{equation*}
$$

From the conditions of Theorem 1.5, we know that F and G share " $(1, k)$ ", and from (4), we have

$$
\begin{gather*}
T(r, F)=O(T(r, f))+S(r, f), \quad T(r, G)=O(T(r, f))+S(r, f) . \tag{5}\\
\bar{N}(r, \infty ; F)=\bar{N}(r, \infty ; G)+S(r, f) .
\end{gather*}
$$

Let H be defined as in Lemma 2.2. Suppose that $H \not \equiv 0$. It follows from Lemma 2.2 that
$T(r, G) \leq N_{2}(r, \infty ; F)+N_{2}(r, 0 ; F)+N_{2}(r, \infty ; G)+N_{2}(r, 0 ; G)+S(r, F)+S(r, G)$.

Using Lemma 2.1, we have

$$
\begin{aligned}
T(r, L) & \leq N_{2}(r, \infty ; f)+N_{2}(r, 0 ; f)+N_{2}(r, \infty ; L)+N_{2}(r, 0 ; L)+S(r, f) \\
& \leq N_{2+n}(r, 0 ; f)+T(r, L)-T(r, f)+N_{2+n}(r, 0 ; f) \\
& +4 \bar{N}(r, \infty ; f)+S(r, f)
\end{aligned}
$$

i.e.

$$
T(r, f) \leq 2 N_{2+n}(r, 0 ; f)+4 \bar{N}(r, \infty ; f)+S(r, f)
$$

Which contradicts the assumption (1) of Theorem 1.5. Thus, $H \equiv 0$. That is

$$
\frac{F^{\prime \prime}}{F^{\prime}}-2 \frac{F^{\prime}}{F-1} \equiv \frac{G^{\prime \prime}}{G^{\prime}}-2 \frac{G^{\prime}}{G-1}
$$

It follows that

$$
\frac{1}{F-1}=\frac{A}{G-1}+B
$$

where $A(\neq 0)$ and B are constants. Thus

$$
\begin{equation*}
F=\frac{(B+1) G+(A-B-1)}{B G+(A-B)} \tag{7}
\end{equation*}
$$

and $T(r, F)=T(r, G)+S(r, f)$.
Next, we consider three cases.
Case 1. $B \neq 0,-1$. If $A-B-1 \neq 0$, then by (7) we know

$$
\bar{N}\left(r, \frac{-A+B+1}{B+1} ; G\right)=\bar{N}(r, 0 ; F) .
$$

By the Nevanlinna second fundamental theorem and Lemma 2.1 we have

$$
\begin{aligned}
T(r, G) & <\bar{N}(r, \infty ; G)+\bar{N}(r, 0 ; G)+\bar{N}\left(r, \frac{-A+B+1}{B+1} ; G\right)+S(r, G) \\
& =\bar{N}(r, \infty ; G)+\bar{N}(r, 0 ; G)+\bar{N}(r, 0 ; F)+S(r, f)
\end{aligned}
$$

i.e

$$
\begin{aligned}
T(r, L)< & \bar{N}(r, \infty ; f)+\bar{N}(r, 0 ; L)+\bar{N}(r, 0 ; f)+S(r, f) \\
\leq & \bar{N}(r, \infty ; f)+T(r, L)-T(r, f)+N_{2+n}(r, 0 ; f) \\
& +\bar{N}(r, 0 ; f)+S(r, f)
\end{aligned}
$$

Then

$$
T(r, f)<\bar{N}(r, \infty ; f)+2 \bar{N}_{2+n}(r, 0 ; f)+S(r, f)
$$

Which contradicts the assumption (1).
If $A-B-1=0$, then by (7) we know $F=((B+1) G) /(B G+1)$. Obviously,

$$
\bar{N}\left(r,-\frac{1}{B} ; G\right)=\bar{N}(r, \infty ; F)
$$

Similar to the arguments in the above, we also have a contradiction.
Case 2. $B=-1$. Then (7) becomes $F=A /(A+1-G)$.

If $A+1 \neq 0$, then $\bar{N}(r, A+1 ; G)=\bar{N}(r, \infty ; F)$. Similarly, we can deduce a contradiction as in Case 1 .

If $A+1=0$, then $F G \equiv 1$, that is

$$
\begin{equation*}
f \cdot L(f) \equiv a^{2} \tag{8}
\end{equation*}
$$

From (8), we have

$$
\begin{equation*}
N(r, 0 ; f)+N(r, \infty ; f)=S(r, f) \tag{9}
\end{equation*}
$$

Since $N\left(r, f^{(n)} / f\right)=S(r, f), m\left(r, f^{(n)} / f\right)=S(r, f)$, then $T\left(r, f^{(n)} / f\right)=S(r, f)$. From (9), we obtain

$$
2 T\left(r, \frac{f}{a}\right)=T\left(r, \frac{f^{2}}{a^{2}}\right)=T\left(r, \frac{a^{2}}{f^{2}}\right)+O(1)=T\left(r, \frac{L}{f}\right)+O(1)+S(r, f)
$$

i.e.

$$
T(r, f)=S(r, f)
$$

we can get a contradiction.
Case 3. $B=0$. Then (7) becomes $F=(G+A-1) / A$.
If $A-1 \neq 0$, then $\bar{N}(r, 1 /(G+A-1))=\bar{N}(r, 1 / F)$. Similarly, we can again deduce a contradiction as in Case 1.

If $A-1=0$, then $F \equiv G$, that is

$$
f \equiv L(f)
$$

This completes the proof of the Theorem 1.5.

Proof of Theorem 1.6: Let F, G be given by (4), from the assumption of Theorem 1.6, we know that F and G share " $(1,1)$ ".

Let H be defined as in Lemma 2.2. Suppose that $H \not \equiv 0$. Since F, G share " $(1,1)$ ", we can get

$$
\leq \begin{align*}
& N(r, \infty ; H) \tag{10}\\
& \bar{N}(r, \infty ; F)+\bar{N}(1 ; F \mid \geq 2)+\bar{N}(r, 0 ; F \mid \geq 2)+\bar{N}(r, ; G \mid \geq 2) \\
& +\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; G^{\prime}\right)+S(r, f)
\end{align*}
$$

and

$$
\begin{equation*}
N(r, 1 ; F \mid=1) \leq N(r, 0 ; H)+S(r, f) \leq N(r, \infty ; H)+S(r, f) \tag{11}
\end{equation*}
$$

where $\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)$ is the reduced counting function of those zeros of F^{\prime} which are not the zeros of $F(F-1)$, and $\bar{N}_{0}\left(r, 0 ; G^{\prime}\right)$ is similarly defined.

By the second fundamental theorem, we see that

$$
\begin{align*}
& T(r, F)+T(r, G) \\
& \bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; F)+\bar{N}(r, \infty ; G)+\bar{N}(r, 0 ; G) \tag{12}\\
& +\bar{N}(r, 1 ; F)+\bar{N}(r, 1 ; G)-N_{0}\left(r, 0 ; F^{\prime}\right) \\
& \\
& -N_{0}\left(r, 0 ; G^{\prime}\right)+S(r, F)+S(r, G)
\end{align*}
$$

Using Lemmas 2.3 and 2.4, (10) and (11) we can get

$$
\begin{align*}
& \bar{N}(r, 1 ; F)+\bar{N}(r, 1 ; G) \\
\leq & N(r, 1 ; F \mid=1)+\bar{N}_{L}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G) \\
\leq & +\bar{N}_{E}^{(2}(r, 1 ; F)+\bar{N}(r, 1 ; G) \\
\leq & N(r, 1 ; F \mid=1)+N(r, 1 ; G)-\bar{N}_{L}(r, 1 ; F) \\
\leq & -\bar{N}_{L}(r, 1 ; G)+\bar{N}_{F>2}(r, 1 ; G) \tag{13}\\
\leq & \bar{N}(r, 0 ; F \mid \geq 2)+\bar{N}(r, 0 ; G \mid \geq 2)+\bar{N}(r, \infty ; F) \\
& +\bar{N}_{*}(r, 1 ; F, G)+T(r, G)-m(r, 1 ; G)+O(1)+\frac{1}{2} \bar{N}(r, \infty ; F) \\
& -\bar{N}_{L}(r, 1 ; F)-\bar{N}_{L}(r, 1 ; G)+\frac{1}{2} \bar{N}(r, 0 ; F) \\
& +N_{0}\left(r, 0 ; F^{\prime}\right)+N_{0}\left(r, 0 ; G^{\prime}\right)+S(r, F)+S(r, G)
\end{align*}
$$

Combining (12) and (13), we can obtain

$$
\begin{aligned}
T(r, F) & \leq \frac{7}{2} \bar{N}(r, \infty ; F)+N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+\frac{1}{2} \bar{N}(r, 0 ; F) \\
& \leq \frac{7}{2} \bar{N}(r, \infty ; F)+\frac{3}{2} N_{2}(r, 0 ; F)+N_{2}(r, 0 ; G)+S(r, f)
\end{aligned}
$$

By the definition of F, G and Lemma 2.1(i), we have

$$
\begin{aligned}
T(r, f) & \leq \frac{7}{2} \bar{N}(r, \infty ; f)+\frac{3}{2} N_{2}(r, 0 ; f)+N_{2}(r, 0 ; L)+S(r, f) \\
& \leq\left(\frac{7}{2}+n\right) \bar{N}(r, \infty ; f)+\frac{3}{2} N_{2}(r, 0 ; f)+N_{2+n}(r, 0 ; f)+S(r, f)
\end{aligned}
$$

By the Lemma 2.1, we have

$$
T(r, f) \leq\left(\frac{7}{2}+n\right) \bar{N}(r, \infty ; f)+\frac{3}{2} N_{2}(r, 0 ; f)+N_{2+n}(r, 0 ; f)+S(r, f)
$$

So

$$
\left(\frac{7}{2}+n\right) \Theta(\infty, f)+\frac{3}{2} \delta_{2}(0, f)+\delta_{2+n}(0, f) \leq n+5
$$

Which contradicts the assumption (2) of Theorem 1.6. Thus, $H \equiv 0$.
Similar to the arguments in Theorem 1.5, we can prove that the conclusions of Theorem 1.6 hold.

Proof of Theorem 1.7: Let F, G be given by (4), from the assumption of Theorem 1.6, we know that F and G share " $(1,0)$ ".

Let H be defined as in Lemma 2.2. Suppose that $H \not \equiv 0$. Since F, G share " $(1,0)$ ", we can get

$$
\begin{align*}
N(r, \infty ; H) \leq & \bar{N}(r, \infty ; F)+\bar{N}(1 ; F \mid \geq 2)+\bar{N}(r, 0 ; F \mid \geq 2) \\
& +\bar{N}(r, ; G \mid \geq 2)+\bar{N}_{L}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G) \tag{14}\\
& +\bar{N}_{0}\left(r, 0 ; F^{\prime}\right)+\bar{N}_{0}\left(r, 0 ; G^{\prime}\right)+S(r, f)
\end{align*}
$$

and

$$
N_{E}^{1)}(r, 1 ; F)=N_{E}^{1)}(r, 1 ; G)+S(r, f), N_{E}^{(2}(r, 1 ; F)=N_{E}^{(2}(r, 1 ; G)+S(r, f)
$$

$$
\begin{equation*}
N_{E}^{1)}(r, 1 ; F) \leq N(r, \infty ; H)+S(r, f) \tag{15}
\end{equation*}
$$

Using Lemmas 2.5-2.7 and (14) and (15), we get

$$
\begin{align*}
& \bar{N}(r, 1 ; F)+\bar{N}(r, 1 ; G) \\
\leq & \bar{N}_{L}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G)+\bar{N}_{E}^{(2}(r, 1 ; F)+\bar{N}(r, 1 ; G) \\
\leq & N_{E}^{1)}(r, 1 ; F)+N(r, 1 ; G)-\bar{N}_{L}(r, 1 ; G) \\
\leq & +\bar{N}_{F>1}(r, 1 ; G)+\bar{N}_{G>1}(r, 1 ; G) \tag{16}\\
\leq & \bar{N}^{(r, 0 ; F \mid \geq 2)+\bar{N}(r, 0 ; G \mid \geq 2)+\bar{N}(r, \infty ; F)} \\
& +\bar{N}_{*}(r, 1 ; F, G)+T(r, G)-m(r, 1 ; G)+O(1) \\
& -\bar{N}_{L}(r, 1 ; G)+\bar{N}_{F>1}(r, 1 ; G)+\bar{N}_{G>1}(r, 1 ; G) \\
& +N_{0}\left(r, 0 ; F^{\prime}\right)+N_{0}\left(r, 0 ; G^{\prime}\right)+S(r, F)+S(r, G) .
\end{align*}
$$

Combining (12) and (16) and by Lemma 2.1, we can obtain

$$
\begin{aligned}
T(r, f) \leq & 6 \bar{N}(r, \infty ; f)+N_{2}(r, 0 ; f)+2 \bar{N}(r, 0 ; f)+2 \bar{N}_{2}(r, 0 ; L)+S(r, f) \\
\leq & (2 n+6) \bar{N}(r, \infty ; f)+N_{2}(r, 0 ; f)+2 \bar{N}(r, 0 ; f) \\
& +2 \bar{N}_{2+n}(r, 0 ; f)+S(r, f)
\end{aligned}
$$

So

$$
(6+2 n) \Theta(\infty, f)+\delta_{2}(0, f)+2 \Theta(0 . f)+2 \delta_{2+n}(0, f) \leq(2 n+10) .
$$

Which contradicts the assumption (3) of Theorem 1.7. Thus, $H \equiv 0$.
Similar to the arguments in Theorem 1.5, we can prove that the conclusions of Theorem 1.7 hold.

4 Acknowledgements

The authors want to thanks the referee for his/her thorough review. This work was supported by the Natural Science Foundation of Jiang-Xi Province in China(Grant No. 2010GQS0119) and the Youth Foundation of Education Bureau of Jiangxi Province in China(Grant No. GJJ10223).

References

[1] T. C. Alzahary, H.-X. Yi, Weighted value sharing and a question of I. Lahiri, Complex Var. Theory Appl., 49(15), 2004, 1063-1078.
[2] A. Banerjee, Meromorphic functions sharing one value, Int. J. Math. Math. Sci., 22, 2005, 3587-3598.
[3] G. G. Gundersen, Meromorphic functions that share finite values with their derivative, J. Math. Anal. Appl., 75, 1980, 441-446, correction 86, 1982, 307.
[4] W. K. Hayman, Meromorphic function, Clarendon Press, Oxford, 1964.
[5] I. Lahiri, A. Sarkar, Uniqueness of a meromorphic function and its derivative, J. Inequal. Pure and Appl. Math., 5 2004, 1-9.
[6] S.-H. Lin, W.-C. Lin, Uniqueness of meromorphic functions concerning weakly weighted-sharing, Kodai. Math. J., 29, 2006, 269-280.
[7] L.-P. Liu, Y.-X. Gu, Uniqueness of meromorphic functions that share one small function with their derivatives, Kodai. Math. J., 27, 2004, 272-279.
[8] E. Mues, N. Steinmetz, Meromorphe funktionen, die mit ihrer ersten und zweiten ableitung einen endlichen wert teilen, Complex Var. Theory Appl., 6, 1986, 51-71.
[9] K.-W. Yu, On entire and meromorphic functions that share small functions with their derivatives, J. Inequal. Pure and Appl. Math., 4, 2003, 1-7.
[10] L. Yang, Value distribution theory, Springer-Verlag, Berlin, 1993.
[11] H.-X. Yi, Uniqueness theorems for meromorphic functions whose n-the derivatives share the same 1-points, Complex Var. Theory Appl., 34, 1997, 421-436.
[12] L.-Z. Yang, Entire functions that share finite values with their derivatives, Bull. Austral. Math. Soc., 41, 1990, 337-342.

Corresponding author: Hong-Yan XU

Jingdezhen Ceramic Institute
Department of Informatics and Engineering
Jingdezhen, Jiangxi, 333403, China
e-mail: xhyhhh@126.com

Yi HU

Jingdezhen Ceramic Institute
Department of Informatics and Engineering
Jingdezhen, Jiangxi, 333403, China
e-mail: hhhaaa123@163.com

[^0]: ${ }^{1}$ Received 04 March, 2010
 Accepted for publication (in revised form) 30 August, 2011

